
Local structure for vertex-minors

Rose McCarty

October 17th, 2022

Joint work with Jim Geelen and Paul Wollan.



Kuratowski’s Theorem

A graph is planar iff it has no K5 or K3,3 minor.

planar graphs forbidden minors



Kuratowski’s Theorem

A graph is planar iff it has no K5 or K3,3 minor.

planar graphs forbidden minors

Graph Minors Theorem (Robertson & Seymour 2004)

Every minor-closed class has finitely many forbidden minors.
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Every vertex-minor-closed class has finitely many forbidden
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Ongoing project with Jim Geelen & Paul Wollan
aiming to prove the conjecture.
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Geelen and Oum’s Theorem

A graph is a circle graph iff it has no W5,W6, . . .
pivot-minor.

Common generalization!
(Bouchet 1988; de Fraysseix 1981)

Conjecture (Oum 2017)

Every pivot-minor-closed class has finitely many forbidden
pivot-minors.



Grid Theorem (Robertson & Seymour 1986)

For any planar graph H, every graph with tree-width ≥ f (H) has
a minor isomorphic to H.

If you cannot “decompose away the whole graph”, then

there is a big grid as a minor.



Theorem (Geelen, Kwon, McCarty, & Wollan 2020)

For any circle graph H, every graph with rank-width ≥ f (H) has
a vertex-minor isomorphic to H.

If you cannot “rank-decompose away the whole graph”, then

there is a big comparability grid as a vertex-minor.



Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class F and any G ∈ F with a large
grid minor, there is a planar subgraph containing a lot of the grid
so that the rest of G “almost attaches” onto just the outer face.
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G (that is, can be
obtained from G by a sequence of local complementations).

G ∗ v ∗ v = G
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Why local equivalence classes?

nice interpretation for graph states in quantum computing

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Conjecture (Geelen)

If the graph states that can be prepared come from a proper
vertex-minor-closed class F , then BQPF = BPP.
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adjacency matrix

The cut-rank of X ⊆ V (G ) is the rank of adj[X ,X ] over GF2.
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Why local equivalence classes?

nice interpretation for graph states in quantum computing

locally equivalent graphs have the same cut-rank function

locally equivalent circle graphs can be efficiently represented

chord diagram

−→

circle graph
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chord diagram circle graph tour graph

View the chord diagram as a 3-regular graph and contract
each of the chords to get the tour graph. It has a specified
Eulerian circuit. Consider locally complementing at v then u.
To delete v , split it off in the tour graph.
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In a 4-regular graph, there are 3 ways to split off v . We say
that a graph H completely immerses into G if H can be
obtained from G by splitting off vertices.

Theorem (Kotzig, Bouchet)

If H and G are prime circle graphs, then H is a vertex-minor
of G ⇐⇒ tour(H) completely immerses into tour(G ).



Lemma (Bouchet)

If H is a vertex-minor of G and v ∈ V (G ) \ V (H), then H is
also a vertex-minor of either

1) G − v ,

2) G ∗ v − v , or

3) G × uv − v for each neighbour u of v .



Consider a planar graph with a spanning tree T. Draw a curve
closely around T. So E (G ) \ E (T) yields one set of
non-crossing chords and E (T) yields another. The circle graph
is fund(T). Taking the dual just exchanges sides.
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Consider a planar graph with a spanning tree T. Draw a curve
closely around T. So E (G ) \ E (T) yields one set of
non-crossing chords and E (T) yields another. The circle graph
is fund(T). Taking the dual just exchanges sides.

Theorem (Bouchet)

The fundamental graphs of two distinct, connected binary
matroids are pivot equivalent iff the matroids are dual.
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Rank-width(G ) is the minimum width of a subcubic tree T
with leafs V (G ).

width(T ) = max
e∈E (T )

cut-rank(Xe)
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Conjecture (Oum 2009)

A class of graphs has bounded rank-width if and only if it does
not contain all bipartite circle graph as pivot-minors.

Would be a common generalization!



Thank you!


