Local structure for vertex-minors

Rose McCarty

October 17th, 2022

Joint work with Jim Geelen and Paul Wollan.

Kuratowski's Theorem

A graph is planar iff it has no K_{5} or $K_{3,3}$ minor.

planar graphs

forbidden minors

Kuratowski's Theorem

A graph is planar iff it has no K_{5} or $K_{3,3}$ minor.

planar graphs

forbidden minors

Graph Minors Theorem (Robertson \& Seymour 2004)
Every minor-closed class has finitely many forbidden minors.

Theorem (Robertson \& Seymour 2003)

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

Theorem (Robertson \& Seymour 2003)

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

Theorem (Robertson \& Seymour 2003)

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

Bouchet's Theorem

A graph is a circle graph iff it has no W_{5}, \hat{W}_{6}, or W_{7} vertex-minor.

circle graphs

forbidden vertex-minors

Bouchet's Theorem

A graph is a circle graph iff it has no W_{5}, \hat{W}_{6}, or W_{7} vertex-minor.

circle graphs

forbidden vertex-minors

Conjecture (Oum 2017)
Every vertex-minor-closed class has finitely many forbidden vertex-minors.

Conjecture (Geelen)
The graphs in any proper vertex-minor-closed class "decompose" into parts that are "almost" circle graphs.

Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class "decompose" into parts that are "almost" circle graphs.

Ongoing project with Jim Geelen \& Paul Wollan aiming to prove the conjecture.

Geelen and Oum's Theorem
A graph is a circle graph iff it has no W_{5}, W_{6}, \ldots pivot-minor.

circle graphs

forbidden pivot-minors

Geelen and Oum's Theorem
A graph is a circle graph iff it has no W_{5}, W_{6}, \ldots pivot-minor.

circle graphs

forbidden pivot-minors

Conjecture (Oum 2017)

Every pivot-minor-closed class has finitely many forbidden pivot-minors.

Geelen and Oum's Theorem
A graph is a circle graph iff it has no W_{5}, W_{6}, \ldots pivot-minor.

Common generalization!
 (Bouchet 1988; de Fraysseix 1981)

Conjecture (Oum 2017)
Every pivot-minor-closed class has finitely many forbidden pivot-minors.

Grid Theorem (Robertson \& Seymour 1986)

For any planar graph H, every graph with tree-width $\geq f(H)$ has a minor isomorphic to H.

If you cannot "decompose away the whole graph", then there is a big grid as a minor.

Theorem (Geelen, Kwon, McCarty, \& Wollan 2020)
For any circle graph H, every graph with rank-width $\geq f(H)$ has a vertex-minor isomorphic to H.

If you cannot "rank-decompose away the whole graph", then there is a big comparability grid as a vertex-minor.

Flat Wall Theorem (Robertson \& Seymour 1995)
For any proper minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a large grid minor, there is a planar subgraph containing a lot of the grid so that the rest of G "almost attaches" onto just the outer face.

Flat Wall Theorem (Robertson \& Seymour 1995)

For any proper minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a large grid minor, there is a planar subgraph containing a lot of the grid so that the rest of G "almost attaches" onto just the outer face.

Local Structure Theorem (Geelen, McCarty, \& Wollan)

For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid,

Local Structure Theorem (Geelen, McCarty, \& Wollan)

For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatible".

The vertex-minors of a graph G are the graphs that can be obtained from G by

vertex deletion

2) local complementation

G

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion
2) local complementation

G

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion
2) local complementation

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion and
2) local complementation

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion and
2) local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

$$
G-u
$$

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion and
2) local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion and
2) local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

G

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion and
2) local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

$G * V$

The vertex-minors of a graph G are the graphs that can be obtained from G by

1) vertex deletion and
2) local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

$$
G * v-u
$$

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G (that is, can be obtained from G by a sequence of local complementations).

G

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G (that is, can be obtained from G by a sequence of local complementations).

G*v

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G (that is, can be obtained from G by a sequence of local complementations).

$$
G * v * v
$$

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G (that is, can be obtained from G by a sequence of local complementations).

$$
G * v * v=G
$$

Why local equivalence classes?

- nice interpretation for graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-
(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Why local equivalence classes?

- nice interpretation for graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-
(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Why local equivalence classes?

- nice interpretation for graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-
(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)
Conjecture (Geelen)
If the graph states that can be prepared come from a proper vertex-minor-closed class \mathcal{F}, then $B Q P_{\mathcal{F}}=B P P$.

Why local equivalence classes?

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function

X
X
X

0 \& 0 \& 0 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 1 \& 1

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)
adjacency matrix

Why local equivalence classes?

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function

adjacency matrix

The cut-rank of $X \subseteq V(G)$ is the rank of $\operatorname{adj}[X, \bar{X}]$ over GF_{2}.

Why local equivalence classes?

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function

separators \longrightarrow cut-rank

Why local equivalence classes?

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function
- locally equivalent circle graphs can be efficiently represented

chord diagram

circle graph

tour graph

View the chord diagram as a 3-regular graph...

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

chord diagram

circle graph

tour graph

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

chord diagram

circle graph

tour graph

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...

chord diagram

circle graph

tour graph

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...

chord diagram

circle graph

tour graph

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete $v . .$.

chord diagram

circle graph

tour graph

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v, split it off in the tour graph.

In a 4-regular graph, there are 3 ways to split off v.

In a 4-regular graph, there are 3 ways to split off v. We say that a graph H completely immerses into G if H can be obtained from G by splitting off vertices.

In a 4-regular graph, there are 3 ways to split off v. We say that a graph H completely immerses into G if H can be obtained from G by splitting off vertices.

Theorem (Kotzig, Bouchet)
If H and G are prime circle graphs, then H is a vertex-minor of $G \Longleftrightarrow \operatorname{tour}(H)$ completely immerses into tour (G).

Lemma (Bouchet)

If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is also a vertex-minor of either

1) $G-v$,
2) $G * v-v$, or
3) $G \times u v-v$ for each neighbour u of v.

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund (T). Taking the dual just exchanges sides.

planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund (T). Taking the dual just exchanges sides.
planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T .

planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T . non-crossing chords and $E(T)$ yields another. The circle graph
is fund (T). Taking the dual just exchanges sides.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

planar graph

fund(T)

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

planar graph

fund(T)

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

planar graph

fund(T*)

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is fund(T). Taking the dual just exchanges sides.

Theorem (Bouchet)
The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Rank-width (G) is the minimum width of a subcubic tree T with leafs $V(G)$.

Rank-width (G) is the minimum width of a subcubic tree T with leafs $V(G)$.

$\operatorname{width}(T)=\max _{e \in E(T)} \operatorname{cut}-\operatorname{rank}\left(X_{e}\right)$

Theorem (Geelen, Kwon, McCarty, \& Wollan 2020)

For any circle graph H, every graph with rank-width $\geq f(H)$ has a vertex-minor isomorphic to H.

Conjecture (Oum 2009)

A class of graphs has bounded rank-width if and only if it does not contain all bipartite circle graph as pivot-minors.

Conjecture (Oum 2009)

A class of graphs has bounded rank-width if and only if it does not contain all bipartite circle graph as pivot-minors.

Would be a common generalization!

Thank you!

