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Theorem (Davies 2024)
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exist x, y € R? of the same color such that ||x — y|| is odd.
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of the same color have ||x — y|| = 1.
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Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no x,y € R?
of the same color have ||x — y|| = 2.
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Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no x,y € R?
of the same color have ||x — y|| = 3.

Hadwiger—Nelson Problem. Aubrey de Grey: > 5 colors needed.
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The theorem of Flirstenberg, Katznelson, and Weiss holds for
any measurable set / C R? with positive upper density:
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The theorem of Flirstenberg, Katznelson, and Weiss holds for
any measurable set / C R? with positive upper density:
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In any measurable coloring of R? with k colors, there exists a
color class which has upper density > 1/k.
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For any k, there exists an X so that every independent set
of G(Z?,PX) has upper density < 1/k.

Proof approach. Fix X. Let Py = {primes p < N}, and take
N — co. We have a w(N) - | X|-regular graph, where 7(N) = |Py|.

Theorem (Lovész 1979)

Every independent set in a d-regular graph has density
< —Anmin/d, and this holds in the edge-weighted setting.
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u€R?

The key is to show that for each x € X,

— |nf Z ) cos(2ma) < e,

where the infimum is taken over all & which are not close to a
non-zero rational ¢ with |b[ small.

Tools:
o A more precise PNT due to Poussin (1899).

e Vinogradov's estimates for certain exponential sums over
primes, used to show that every sufficiently large odd
integer is a sum of three primes (1937).
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Question

Is there any infinite set D C 7Z so that the plane can be
colored with finitely many colors so as to avoid distances in D?
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Question (Soifer 2010)
What if D ={2":ne N}, or D ={n!: n € N}?
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Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there
exist x, y € R? of the same color such that ||x — y|| = f(Z).

For any non-constant integer polynomial f with leading
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Conjecture (Bukh 2008)

For any algebraically independent D C R, the plane can be
colored with finitely many colors so as to avoid distances in D.
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Thank you!



