

Prime distances in colorings of the plane

Rose McCarty

School of Math and School of CS

April 24, 2024

Theorem (Davies 2024)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is odd.

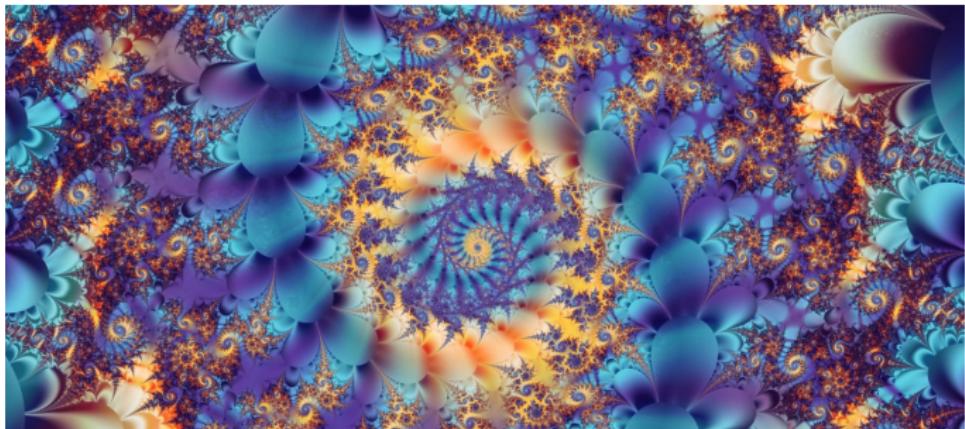


Figure by Andy Bantly

Theorem (Davies 2024)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is odd.

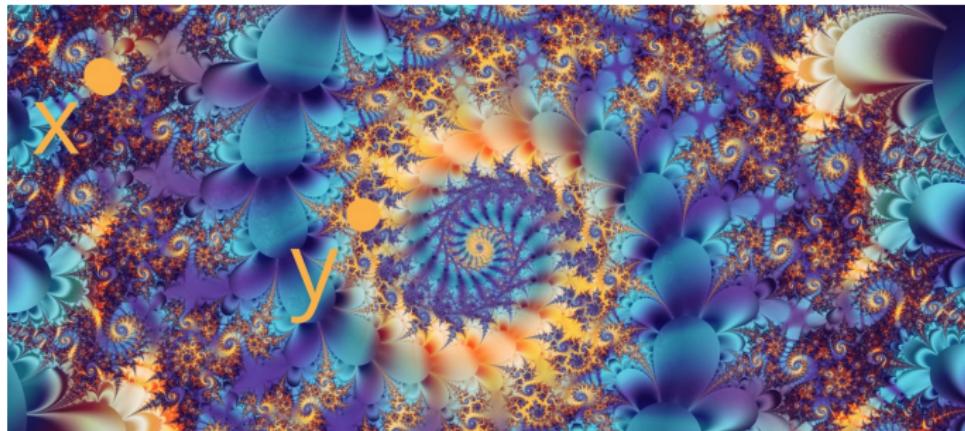


Figure by Andy Bantly

Theorem (Davies 2024)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is odd.

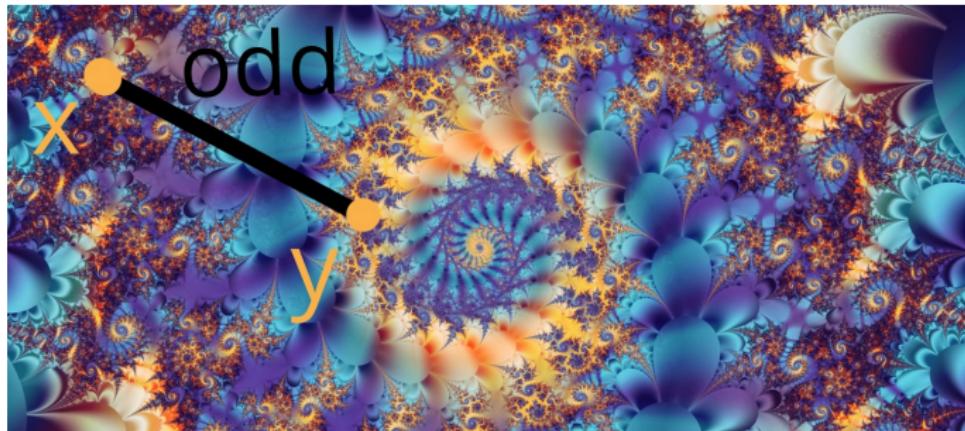


Figure by Andy Bantly

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

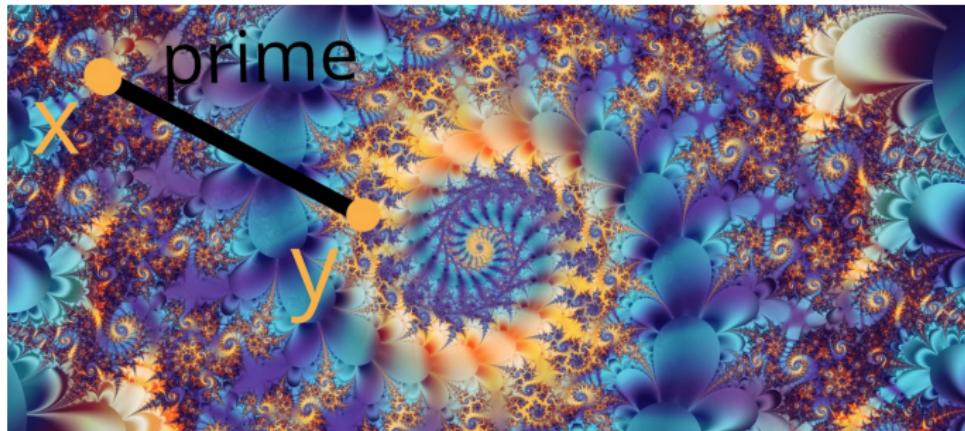
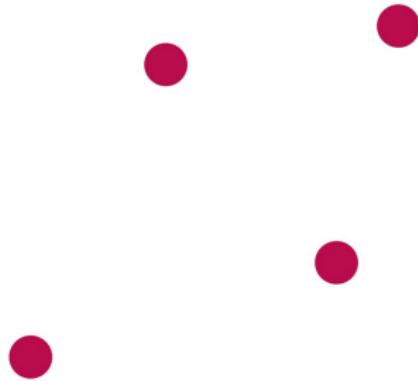


Figure by Andy Bantly

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

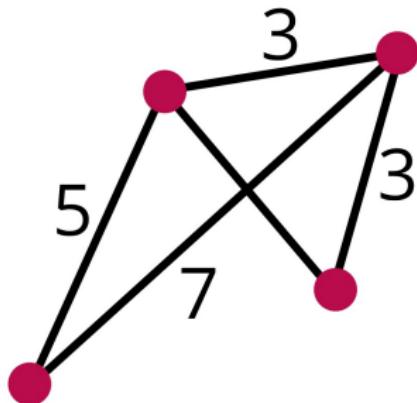
Let $\mathbf{P} \subseteq \mathbb{R}^2$ be finite.



Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

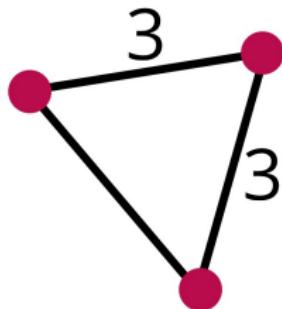
Let $\mathbf{P} \subseteq \mathbb{R}^2$ be finite. The **prime distance graph** has an edge between $x, y \in \mathbf{P}$ if $\|x - y\|$ is prime.



Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

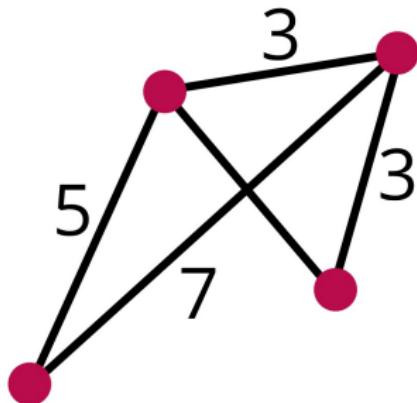
Let $\mathbf{P} \subseteq \mathbb{R}^2$ be finite. The **prime distance graph** has an edge between $x, y \in \mathbf{P}$ if $\|x - y\|$ is prime.



Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

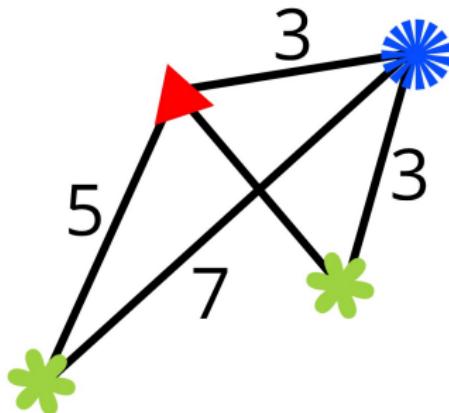
Let $\mathbf{P} \subseteq \mathbb{R}^2$ be finite. The **prime distance graph** has an edge between $x, y \in \mathbf{P}$ if $\|x - y\|$ is prime.



Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

Let $P \subseteq \mathbb{R}^2$ be finite. The **prime distance graph** has an edge between $x, y \in P$ if $\|x - y\|$ is prime. **Theorem:** For each k , there exists such a graph of **chromatic number** $\geq k$.



Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

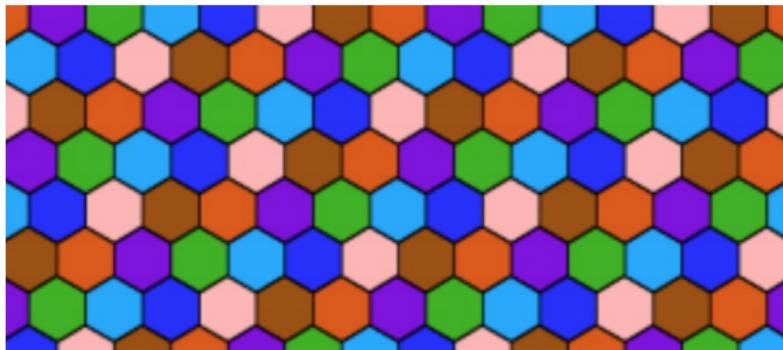


Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 1$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

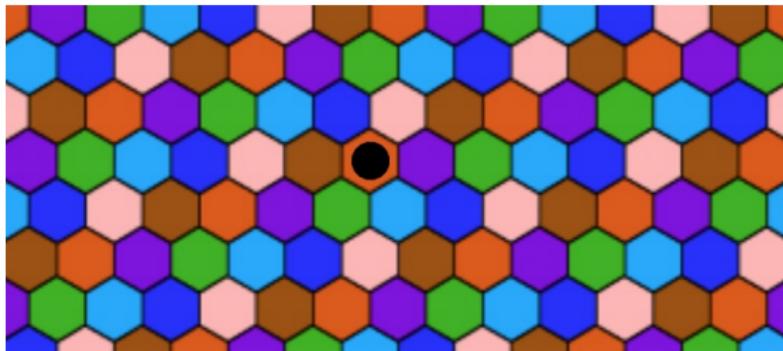


Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 1$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

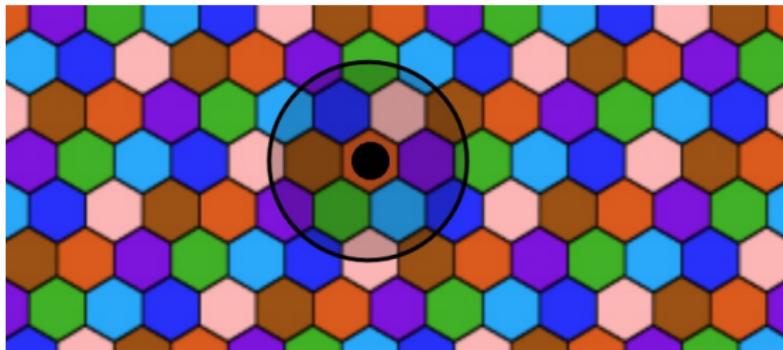


Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 1$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many **colors**, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is **prime**.



Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 2$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

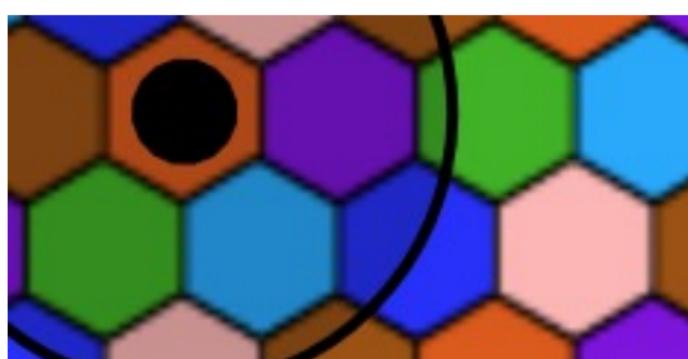
Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 3$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.



and ≥ 100

Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 3$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

and ≥ 100

Figure by Daniel Ashlock

Theorem (Isbell; see Soifer 2008)

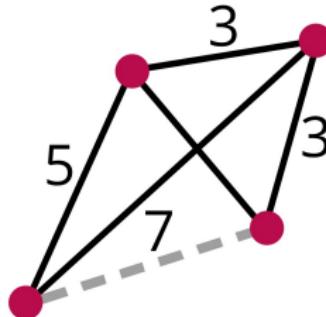
The plane can be colored with 7 colors so that no $x, y \in \mathbb{R}^2$ of the same color have $\|x - y\| = 3$.

Hadwiger–Nelson Problem. Aubrey de Grey: ≥ 5 colors needed.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

and ≥ 100



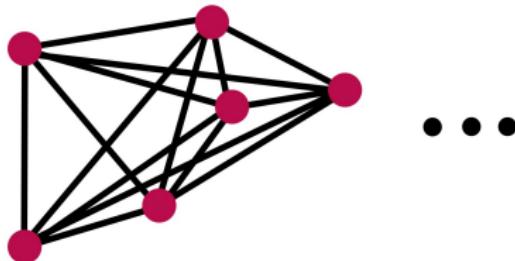
Theorem (Graham, Rothschild, Straus 1974)

There are no four points in \mathbb{R}^2 whose pairwise distances are all odd.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

and ≥ 100



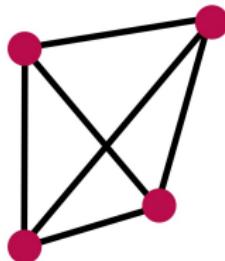
Theorem (Graham, Rothschild, Straus 1974)

There are no four points in \mathbb{R}^2 whose pairwise distances are all odd. So the prime distance graph has no clique of size 22.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

and ≥ 100



Theorem (Graham, Rothschild, Straus 1974)

There are no four points in \mathbb{R}^2 whose pairwise distances are all odd. So the prime distance graph has no clique of size 22.

Theorem (Davies, M., Pilipczuk 2024+)

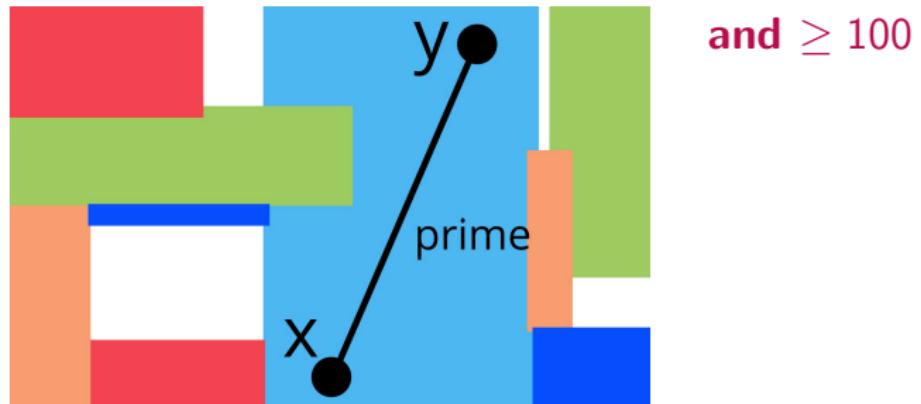
In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

Theorem (Furstenberg, Katznelson, Weiss 1990)

If each color class is measurable, then there exists d_0 so that the “densest” color contains all real distances $d \geq d_0$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

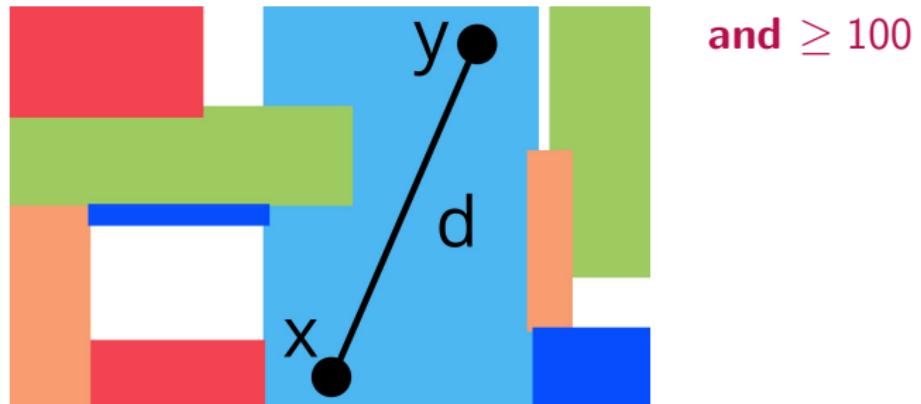


Theorem (Furstenberg, Katznelson, Weiss 1990)

If each color class is measurable, then there exists d_0 so that the “densest” color contains all real distances $d \geq d_0$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.

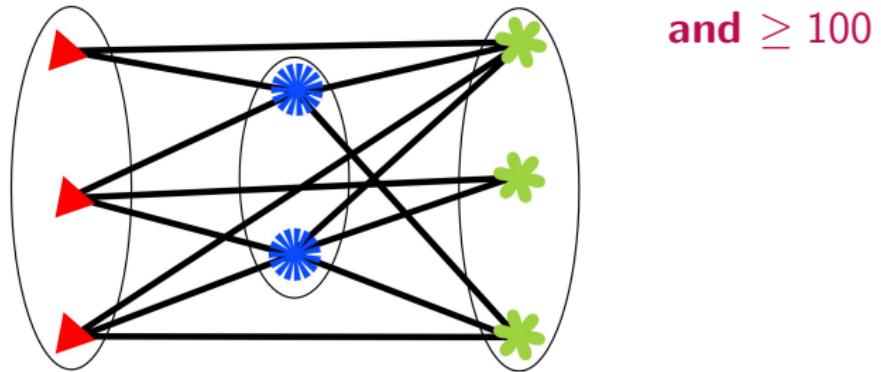


Theorem (Furstenberg, Katznelson, Weiss 1990)

If each color class is measurable, then there exists d_0 so that the “densest” color contains all real distances $d \geq d_0$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.



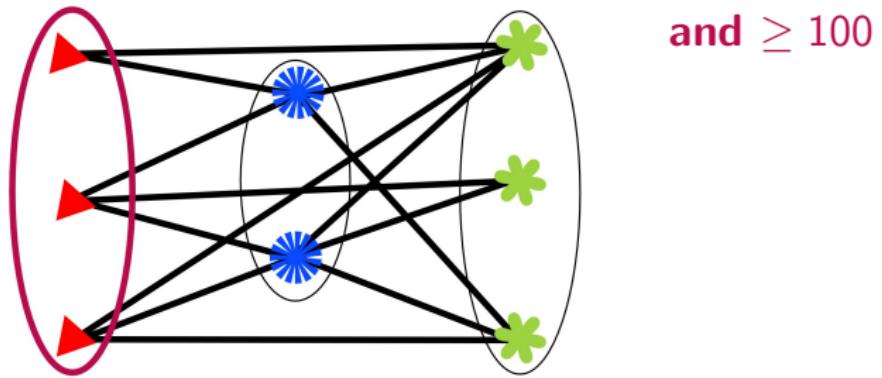
Theorem (Furstenberg, Katznelson, Weiss 1990)

If each color class is measurable, then there exists d_0 so that the “densest” color contains all real distances $d \geq d_0$.

In finite graphs, k -colorable \rightarrow **independent set** of density $\geq 1/k$.

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.



Theorem (Furstenberg, Katznelson, Weiss 1990)

If each color class is measurable, then there exists d_0 so that the “densest” color contains all real distances $d \geq d_0$.

In finite graphs, k -colorable \rightarrow **independent set** of density $\geq 1/k$.

The theorem of Fürstenberg, Katznelson, and Weiss holds for any measurable set $I \subseteq \mathbb{R}^2$ with **positive upper density**:

$$\limsup_{\ell \rightarrow \infty} \frac{m(S_\ell \cap I)}{m(S_\ell)} > 0.$$

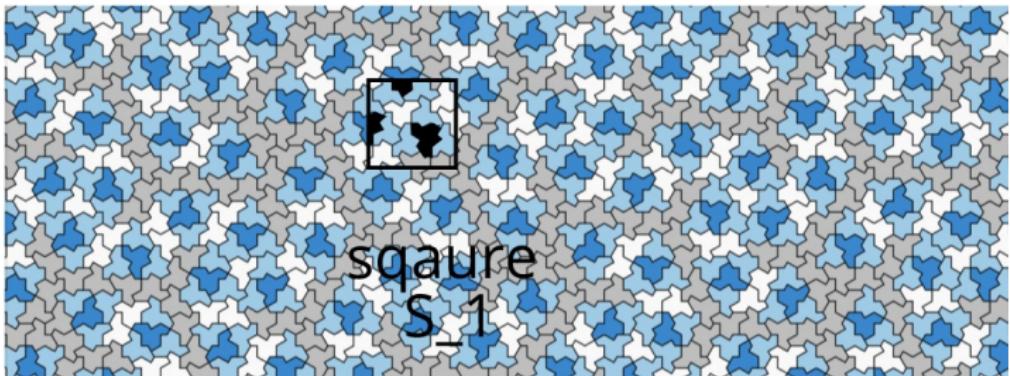


Figure by Smith, Myers, Kaplan, and Goodman-Strauss

The theorem of Fürstenberg, Katznelson, and Weiss holds for any measurable set $I \subseteq \mathbb{R}^2$ with **positive upper density**:

$$\limsup_{\ell \rightarrow \infty} \frac{m(S_\ell \cap I)}{m(S_\ell)} > 0.$$

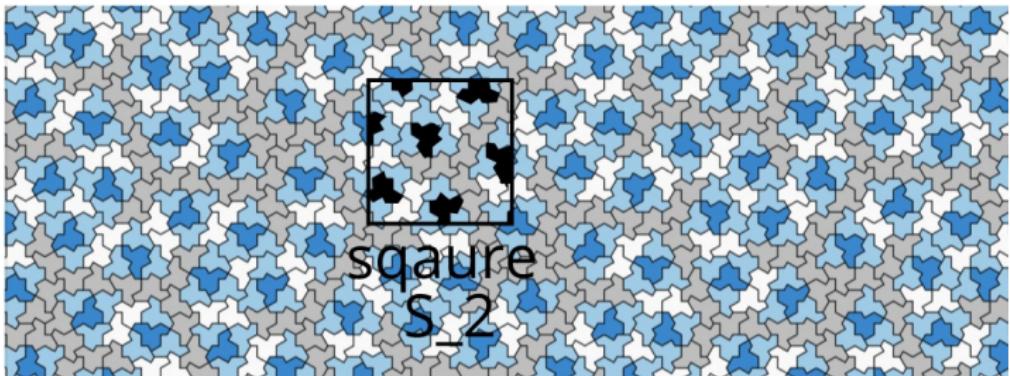


Figure by Smith, Myers, Kaplan, and Goodman-Strauss

The theorem of Fürstenberg, Katznelson, and Weiss holds for any measurable set $I \subseteq \mathbb{R}^2$ with **positive upper density**:

$$\limsup_{\ell \rightarrow \infty} \frac{m(S_\ell \cap I)}{m(S_\ell)} > 0.$$

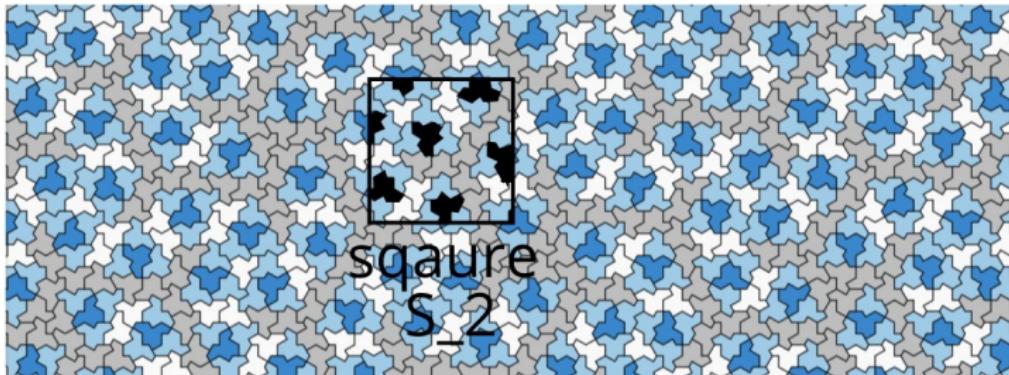
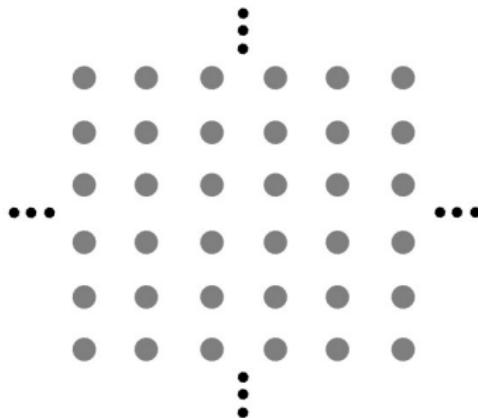


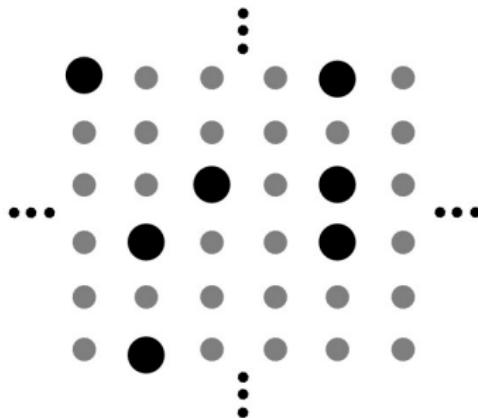
Figure by Smith, Myers, Kaplan, and Goodman-Strauss

In any **measurable** coloring of \mathbb{R}^2 with k colors, there exists a color class which has upper density $\geq 1/k$.

To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 .

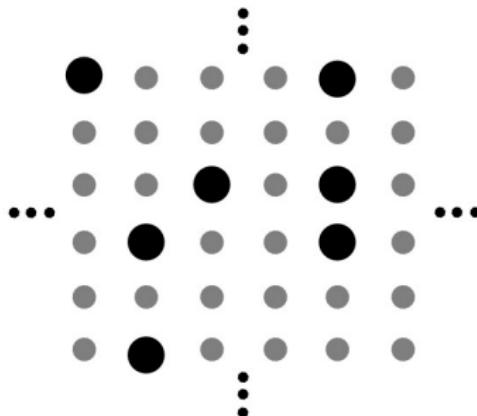


To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$.



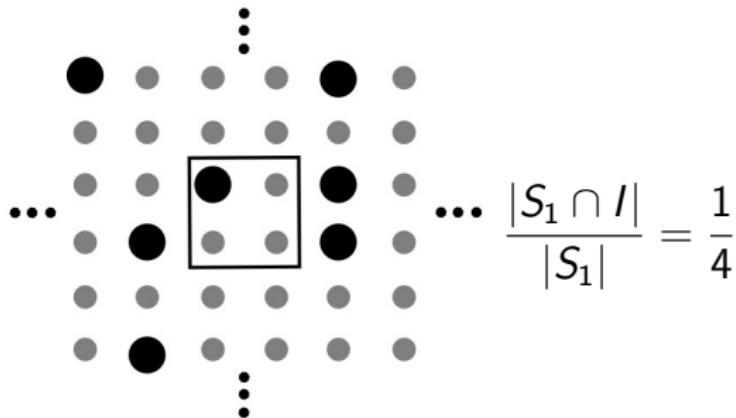
To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



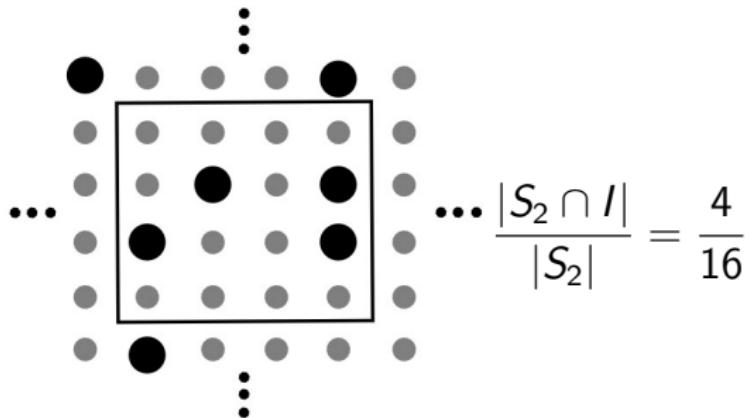
To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



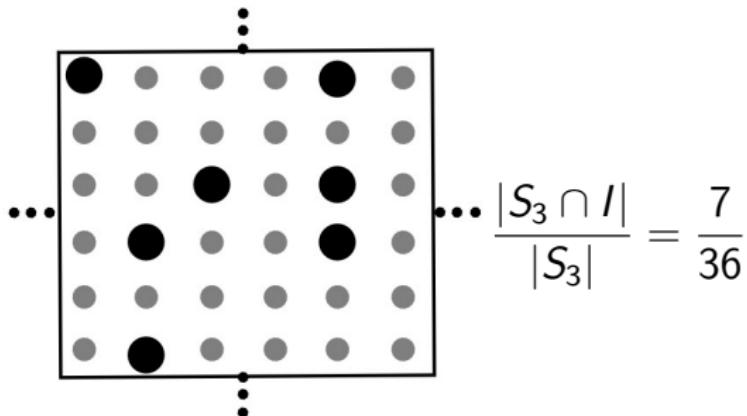
To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



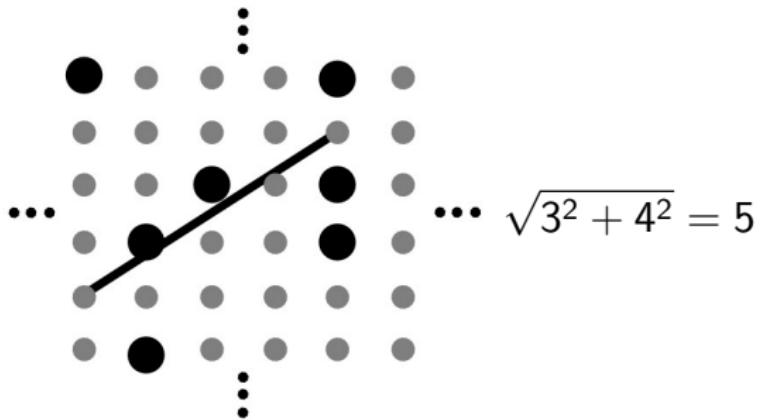
To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

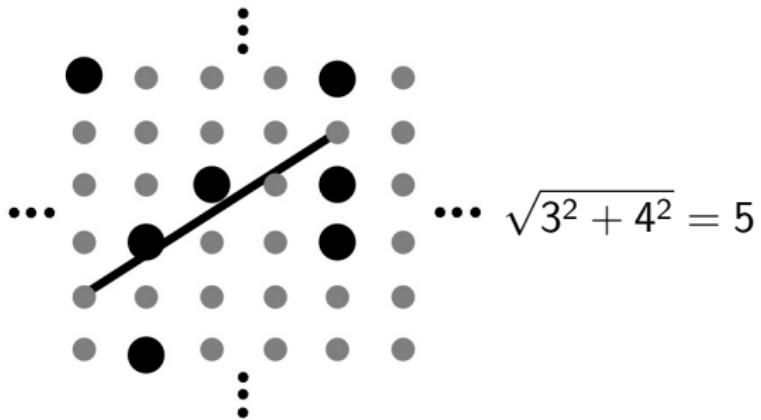
$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



Put an edge between pairs whose distance is **prime**.

To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

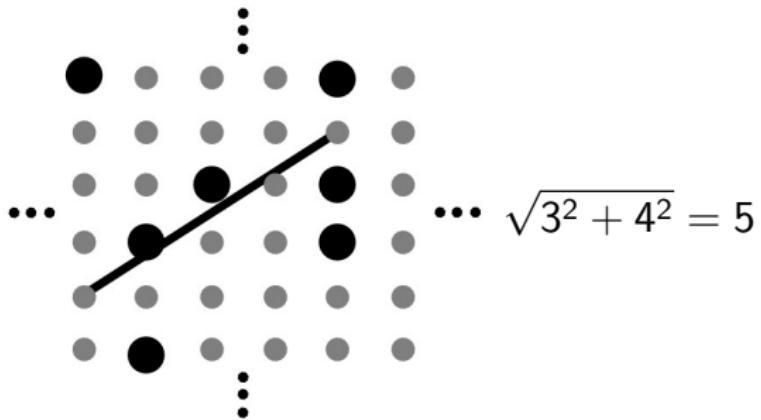
$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **14-colorable**.

To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

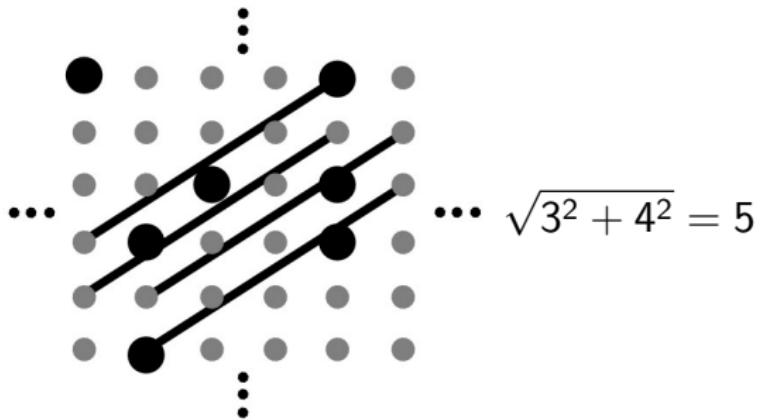
$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **14-colorable**. So we define a different graph on \mathbb{Z}^2 which **embeds** into the prime distance graph on \mathbb{R}^2 .

To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

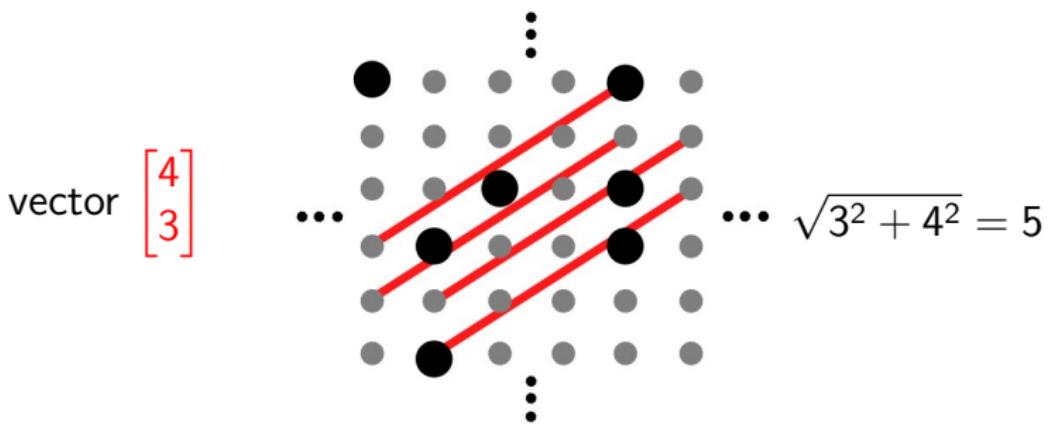
$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **14-colorable**. So we define a different graph on \mathbb{Z}^2 which **embeds** into the prime distance graph on \mathbb{R}^2 .

To define “density” in the **non-measurable** setting, we go to \mathbb{Z}^2 . Let $I \subseteq \mathbb{Z}^2$. Then I has **positive upper density** if

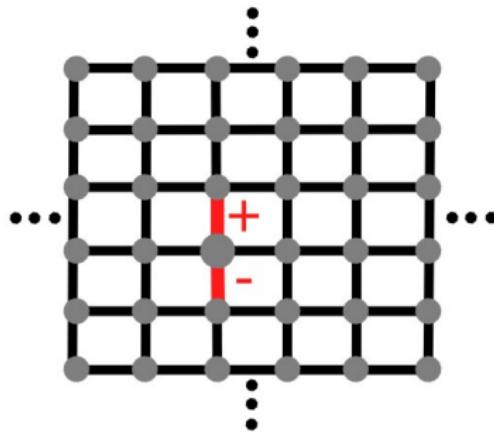
$$\limsup_{\ell \rightarrow \infty} \frac{|S_\ell \cap I|}{|S_\ell|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **14-colorable**. So we define a different graph on \mathbb{Z}^2 which **embeds** into the prime distance graph on \mathbb{R}^2 .

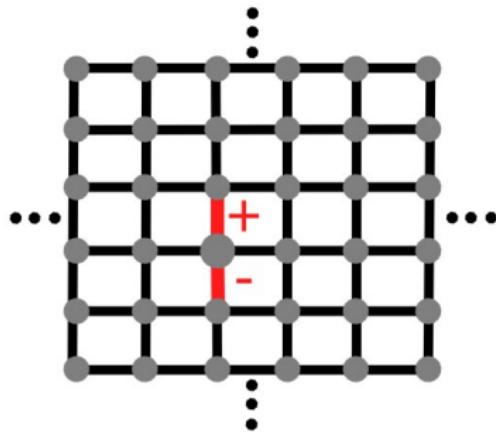
Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$



Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$



We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = ???$$

We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$

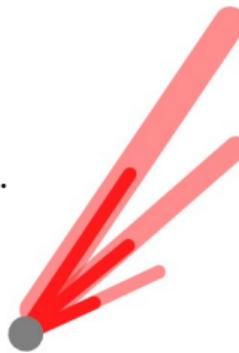
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



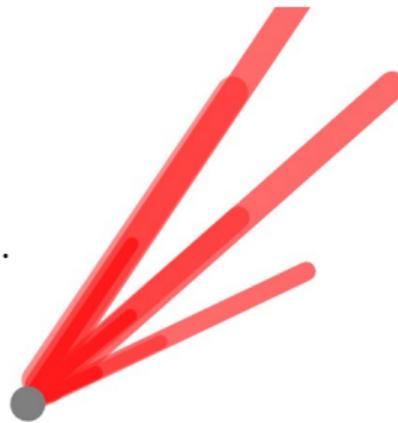
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



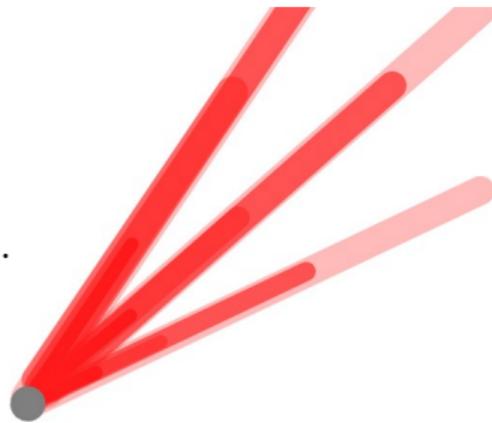
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors called the **generators**, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $v \in \mathbb{Z}^2$ and $x \in X$.

We define a particular X so that

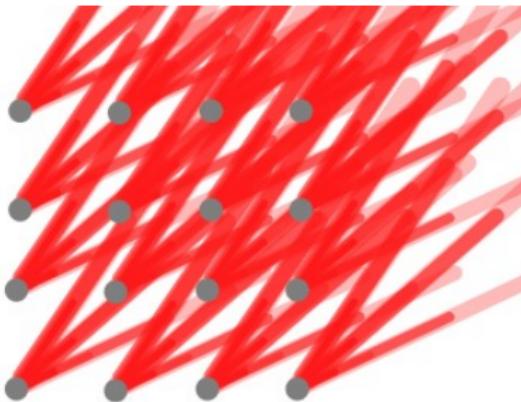
- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Theorem (Davies, M., Pilipczuk 2024+)

*For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

Theorem (Davies, M., Pilipczuk 2024+)

*For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*



It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

One final property about X : For each $u \in \mathbb{R}^2$, at most two $x \in X$ have $u \cdot x$ close to a non-zero rational $\frac{a}{b}$ with $|b|$ small.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

$$\left| \left| u \cdot x - \frac{a}{b} \right| \right| < \epsilon \text{ for coprime } a, b$$

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

One final property about X : For each $u \in \mathbb{R}^2$, at most two $x \in X$ have $u \cdot x$ close to a non-zero rational $\frac{a}{b}$ with $|b|$ small.

Theorem (Davies, M., Pilipczuk 2024+)

*For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

Proof approach. Fix X .

Theorem (Davies, M., Pilipczuk 2024+)

*For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$.

Theorem (Davies, M., Pilipczuk 2024+)

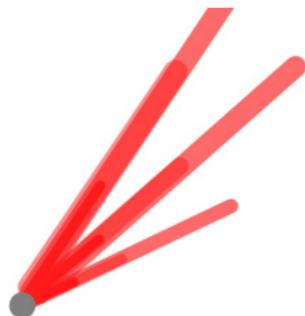
*For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$.

Theorem (Davies, M., Pilipczuk 2024+)

*For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

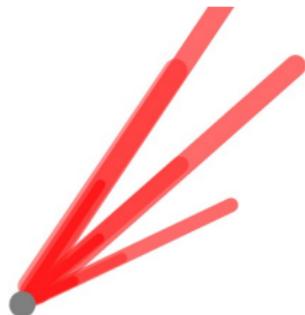
Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$.



Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

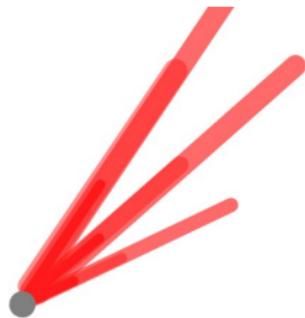
Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$.



Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$.



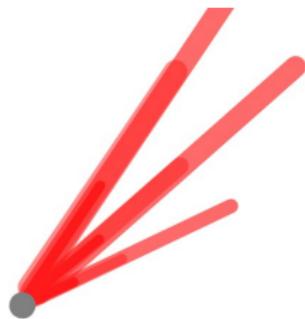
Theorem (Lovász 1979)

Every *independent set* in a **d -regular** graph has density $\leq -\lambda_{\min}/(d - \lambda_{\min})$.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$.



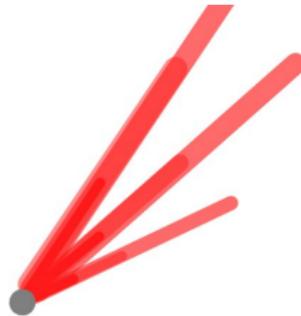
Theorem (Lovász 1979)

Every independent set in a **d -regular** graph has density $\leq -\lambda_{\min}/d$.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$.



Theorem (Lovász 1979)

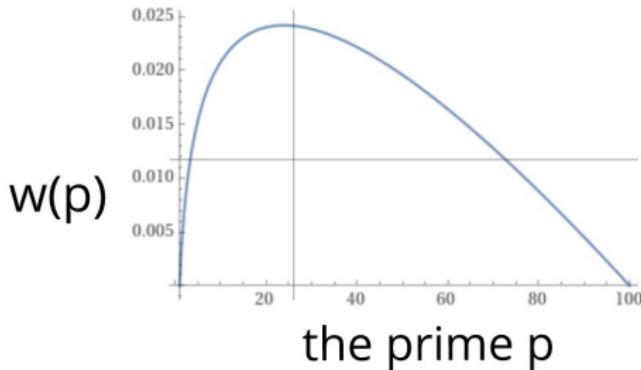
Every *independent set* in a **d -regular** graph has density $\leq -\lambda_{\min}/d$, and this holds in the **edge-weighted setting**.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$. We assign each edge px a **weight** depending only on p :

$$w(p) = \frac{1}{N} \left(1 - \frac{p}{N}\right) \ln(p)$$

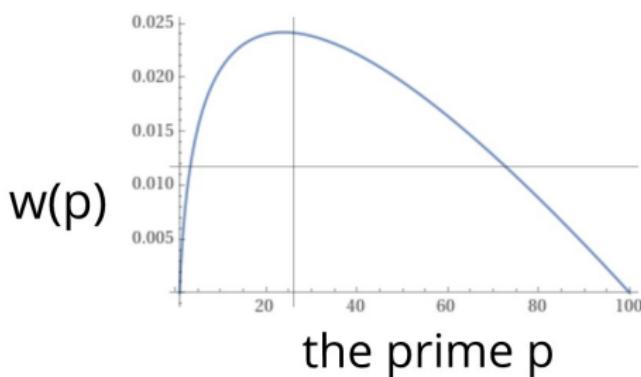


Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$. We assign each edge px a **weight** depending only on p :

$$w(p) = \frac{1}{N} \left(1 - \frac{p}{N}\right) \ln(p)$$



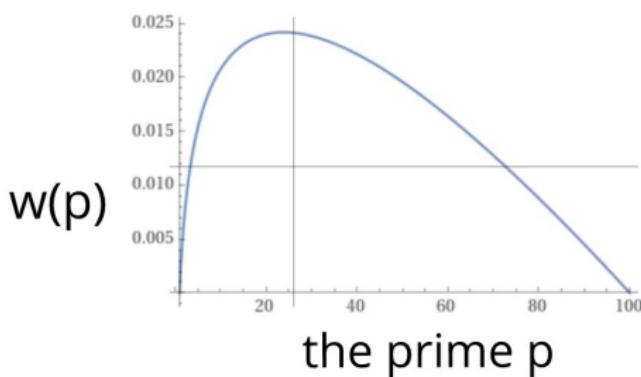
The **prime number theorem** says that $\sum_{p \in \mathbb{P}_N} \frac{\ln(p)}{N} \rightarrow 1$.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$. We assign each edge px a **weight** depending only on p :

$$w(p) = \frac{1}{N} \left(1 - \frac{p}{N}\right) \ln(p)$$



The **prime number theorem** says that $\sum_{p \in \mathbb{P}_N} \frac{\ln(p)}{N} \rightarrow 1$.

So the sum of the edge-weights $\rightarrow \frac{1}{2}|X|$.

Theorem (Davies, M., Pilipczuk 2024+)

For any k , there exists an X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Proof approach. Fix X . Let $\mathbb{P}_N = \{\text{primes } p \leq N\}$, and take $N \rightarrow \infty$. We have a $\pi(N) \cdot |X|$ -**regular** graph, where $\pi(N) = |\mathbb{P}_N|$. We assign each edge px a **weight** depending only on p :

$$w(p) = \frac{1}{N} \left(1 - \frac{p}{N}\right) \ln(p)$$

Theorem (Davies 2024):

In this edge-weighted setting,

we essentially have $\lambda_{\min} = \inf_{u \in \mathbb{R}^2} \sum_{px} w(p) \cos(2\pi(u \cdot x))$.

The **prime number theorem** says that $\sum_{p \in \mathbb{P}_N} \frac{\ln(p)}{N} \rightarrow 1$.

So the sum of the edge-weights $\rightarrow \frac{1}{2}|X|$.

So our goal is to show that

$$- \inf_{u \in \mathbb{R}^2} \sum_{px} w(p) \cos(2\pi(u \cdot x)) < \epsilon |X|.$$

So our goal is to show that

$$-\inf_{u \in \mathbb{R}^2} \sum_{px} w(p) \cos(2\pi(u \cdot x)) < \epsilon |X|.$$

The key is to show that for each $x \in X$,

$$-\inf_{\alpha \in \mathbb{R}} \sum_p w(p) \cos(2\pi\alpha) < \epsilon,$$

where the infimum is taken over all α which are **not** close to a non-zero rational $\frac{a}{b}$ with $|b|$ small.

So our goal is to show that

$$-\inf_{u \in \mathbb{R}^2} \sum_{px} w(p) \cos(2\pi(u \cdot x)) < \epsilon |X|.$$

The key is to show that for each $x \in X$,

$$-\inf_{\alpha \in \mathbb{R}} \sum_p w(p) \cos(2\pi\alpha) < \epsilon,$$

where the infimum is taken over all α which are **not** close to a non-zero rational $\frac{a}{b}$ with $|b|$ small.

Tools:

- A more precise PNT due to Poussin (1899).

So our goal is to show that

$$-\inf_{u \in \mathbb{R}^2} \sum_{px} w(p) \cos(2\pi(u \cdot x)) < \epsilon |X|.$$

The key is to show that for each $x \in X$,

$$-\inf_{\alpha \in \mathbb{R}} \sum_p w(p) \cos(2\pi\alpha) < \epsilon,$$

where the infimum is taken over all α which are **not** close to a non-zero rational $\frac{a}{b}$ with $|b|$ small.

Tools:

- A more precise PNT due to Poussin (1899).
- Vinogradov's estimates for certain exponential sums over primes, used to show that every sufficiently large odd integer is a sum of three primes (1937).

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\| = f(\mathbb{Z})$.

For any non-constant integer polynomial f with leading coefficient > 0 , i.e. $f(x) = x^2 + 3$, $f(\mathbb{Z}) = \{3, 4, 7, 12, \dots\}$.

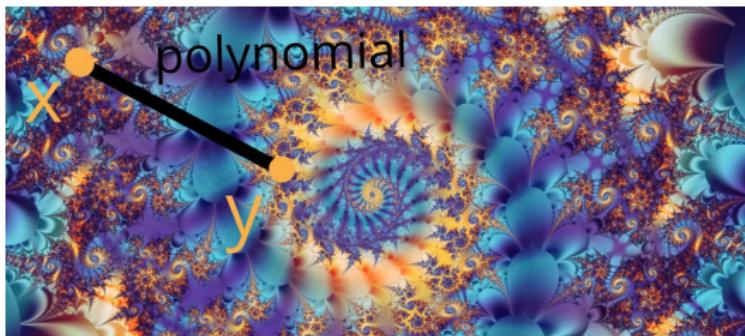
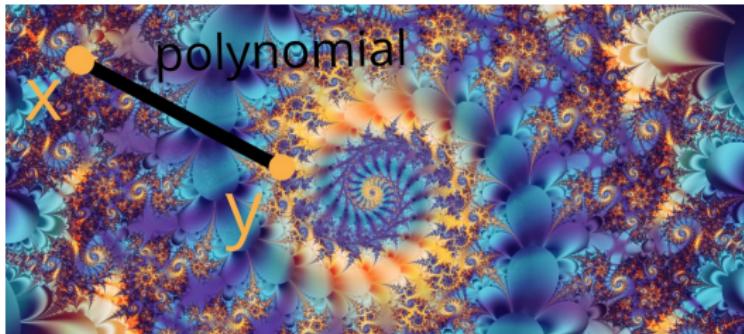


Figure by Andy Bantly

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\| = f(\mathbb{Z})$.

For any non-constant integer polynomial f with leading coefficient > 0 , i.e. $f(x) = x^2 + 3$, $f(\mathbb{Z}) = \{3, 4, 7, 12, \dots\}$.



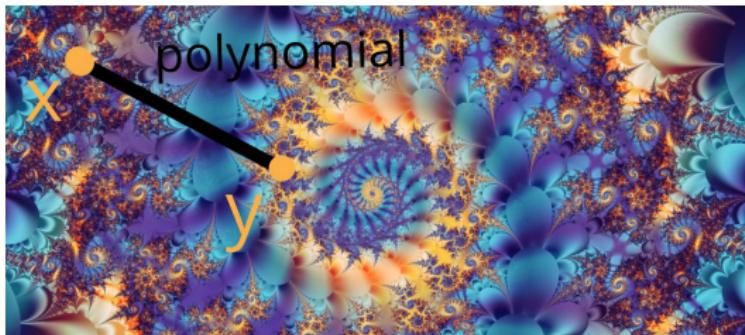
Question

Is there any infinite set $D \subseteq \mathbb{Z}$ so that the plane can be colored with finitely many colors so as to avoid distances in D ?

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\| = f(\mathbb{Z})$.

For any non-constant integer polynomial f with leading coefficient > 0 , i.e. $f(x) = x^2 + 3$, $f(\mathbb{Z}) = \{3, 4, 7, 12, \dots\}$.



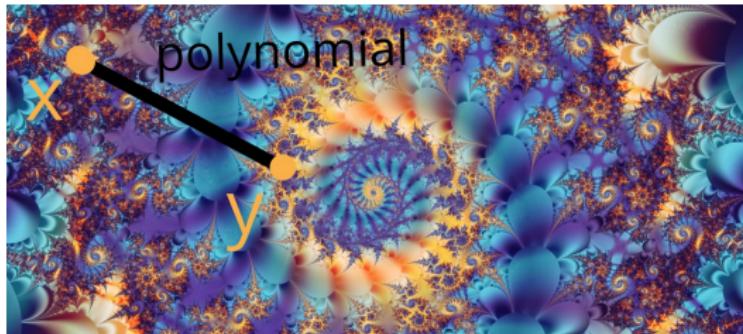
Question (Soifer 2010)

What if $D = \{2^n : n \in \mathbb{N}\}$, or $D = \{n! : n \in \mathbb{N}\}$?

Theorem (Davies, M., Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\| = f(\mathbb{Z})$.

For any non-constant integer polynomial f with leading coefficient > 0 , i.e. $f(x) = x^2 + 3$, $f(\mathbb{Z}) = \{3, 4, 7, 12, \dots\}$.



Conjecture (Bukh 2008)

For any algebraically independent $D \subseteq \mathbb{R}$, the plane can be colored with finitely many colors so as to avoid distances in D .

Thank you!