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In any coloring of the plane with finitely many colors, there
exist x , y ∈ R2 of the same color such that ||x − y || is prime.

Let P ⊆ R2 be finite. The prime distance graph has an
edge between x , y ∈ P if ||x − y || is prime. Theorem: For
each k , there exists such a graph of chromatic number ≥ k .
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Figure by Daniel Ashlock

and ≥ 100

Theorem (Isbell; see Soifer 2008)

The plane can be colored with 7 colors so that no x , y ∈ R2

of the same color have ||x − y || = 3.

Hadwiger–Nelson Problem. Aubrey de Grey: ≥ 5 colors needed.

https://occupymath.wordpress.com/2017/07/27/unsolved-mysteries-what-is-the-chromatic-number-of-the-plane/
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The theorem of Fürstenberg, Katznelson, and Weiss holds for
any measurable set I ⊆ R2 with positive upper density:

lim sup
ℓ→∞

m(Sℓ ∩ I )

m(Sℓ)
> 0.

Figure by Smith, Myers, Kaplan, and Goodman-Strauss

In any measurable coloring of R2 with k colors, there exists a
color class which has upper density ≥ 1/k .

https://cs.uwaterloo.ca/~csk/hat/
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Z2. Let I ⊆ Z2. Then I has positive upper density if

lim sup
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vector

[
4
3

]
√
32 + 42 = 5

Put an edge between pairs whose distance is prime. This
graph is actually 14-colorable. So we define a different graph
on Z2 which embeds into the prime distance graph on R2.
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For any k, there exists an X so that every independent set
of G (Z2,PX ) has upper density < 1/k.

||u · x − a
b
|| < ϵ

for coprime a, b

It follows that G (Z2,PX ) has chromatic number > k .

One final property about X : For each u ∈ R2, at most two
x ∈ X have u · x close to a non-zero rational a

b
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For any k, there exists an X so that every independent set
of G (Z2,PX ) has upper density < 1/k.

Proof approach. Fix X . Let PN = {primes p ≤ N}, and take

N → ∞. We have a π(N) · |X |-regular graph, where π(N) = |PN |.

Theorem (Lovász 1979)

Every independent set in a d-regular graph has density
≤ −λmin/d, and this holds in the edge-weighted setting.
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Theorem (Davies 2024):
In this edge-weighted setting,
we essentially have λmin =

infu∈R2

∑
px w(p) cos(2π(u · x)).
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So our goal is to show that

− inf
u∈R2

∑
px

w(p) cos(2π(u · x)) < ϵ|X |.

The key is to show that for each x ∈ X ,

− inf
α∈R

∑
p

w(p) cos(2πα) < ϵ,

where the infimum is taken over all α which are not close to a
non-zero rational a

b
with |b| small.

Tools:

A more precise PNT due to Poussin (1899).

Vinogradov’s estimates for certain exponential sums over
primes, used to show that every sufficiently large odd
integer is a sum of three primes (1937).
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In any coloring of the plane with finitely many colors, there
exist x , y ∈ R2 of the same color such that ||x − y || = f (Z).

For any non-constant integer polynomial f with leading
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Figure by Andy BantlyConjecture (Bukh 2008)

For any algebraically independent D ⊆ R, the plane can be
colored with finitely many colors so as to avoid distances in D.

https://www.codeproject.com/Articles/353651/Visualizing-Fractals


Thank you!


