

Colorings of the plane cannot avoid prime distances

Rose McCarty

School of Math and School of CS

April 14, 2024

Theorem (Davies)

*In any coloring of the plane with finitely many colors, there exist monochromatic $x, y \in \mathbb{R}^2$ such that $\|x - y\|$ is **odd**.*

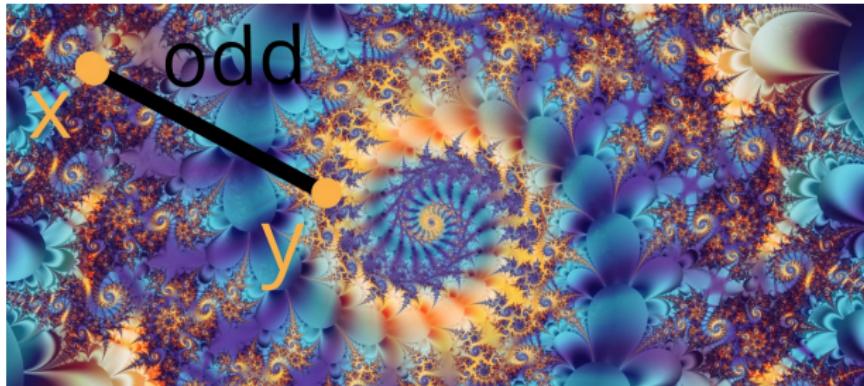


Figure by Andy Bantly

Theorem (Davies, M., Pilipczuk 2023)

*In any coloring of the plane with finitely many colors, there exist monochromatic $x, y \in \mathbb{R}^2$ such that $\|x - y\|$ is **prime**.*

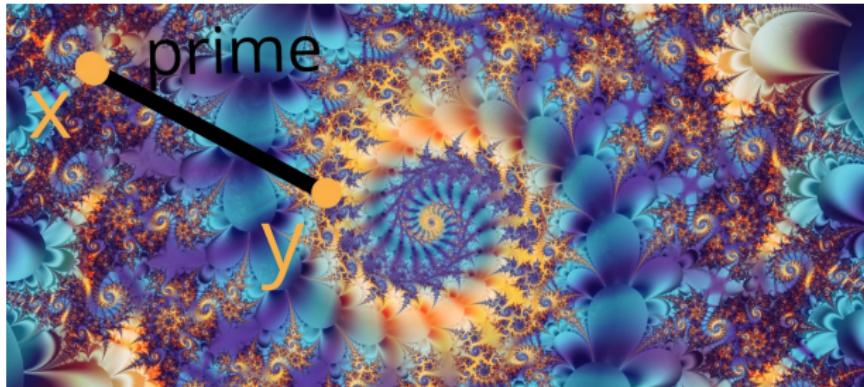
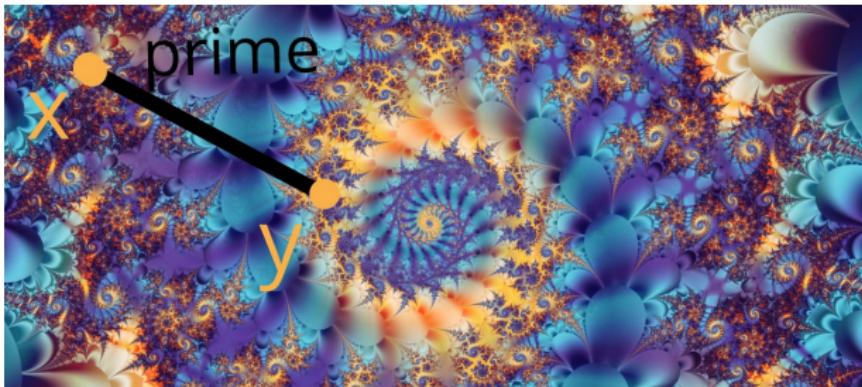


Figure by Andy Bantly

Theorem (Davies, M., Pilipczuk 2023)

*In any coloring of the plane with finitely many colors, there exist monochromatic $x, y \in \mathbb{R}^2$ such that $\|x - y\|$ is **prime**.*

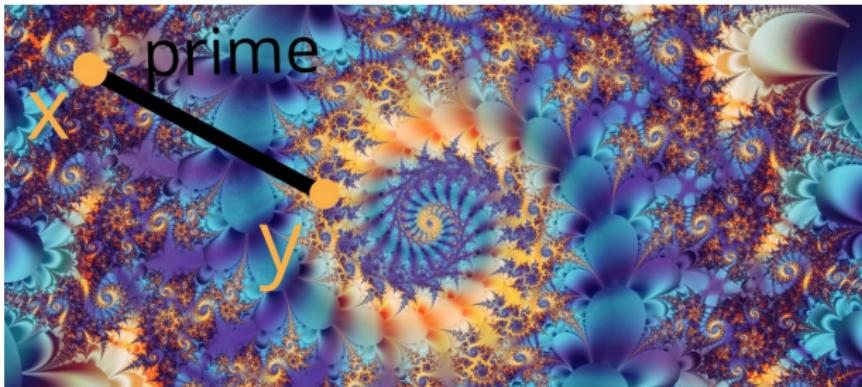


Theorem (Fürstenberg, Katznelson, Weiss 1990)

*This is true if each color class is **measurable**.*

Theorem (Davies, M., Pilipczuk 2023)

In any coloring of the plane with finitely many colors, there exist monochromatic $x, y \in \mathbb{R}^2$ such that $\|x - y\|$ is prime.



Theorem (Fürstenberg, Katznelson, Weiss 1990)

This is true if each color class is measurable. In fact, the “densest” color contains all distances $d \geq d_0$.

A set $I \subseteq \mathbb{R}^2$ has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{m(S \cap I)}{m(S)} > 0.$$

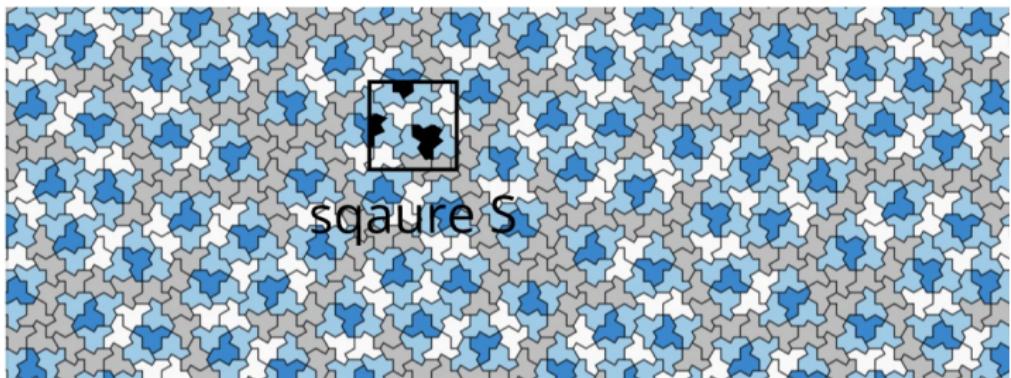


Figure by Smith, Myers, Kaplan, and Goodman-Strauss

A set $I \subseteq \mathbb{R}^2$ has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{m(S \cap I)}{m(S)} > 0.$$

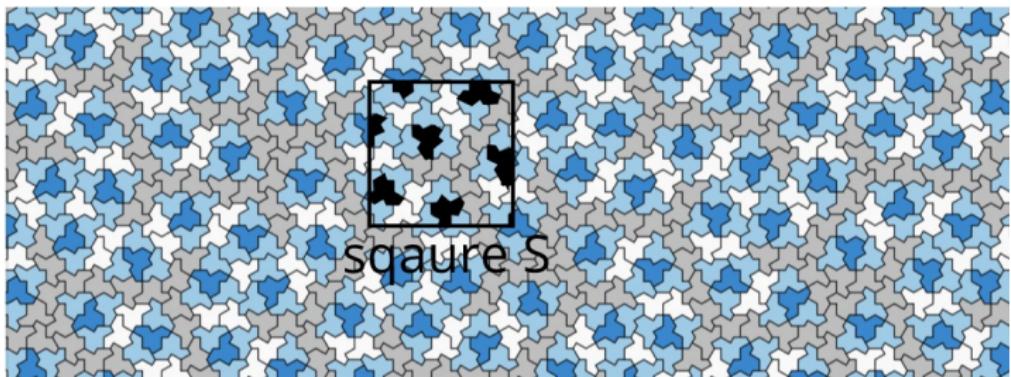


Figure by Smith, Myers, Kaplan, and Goodman-Strauss

A set $I \subseteq \mathbb{R}^2$ has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{m(S \cap I)}{m(S)} > 0.$$

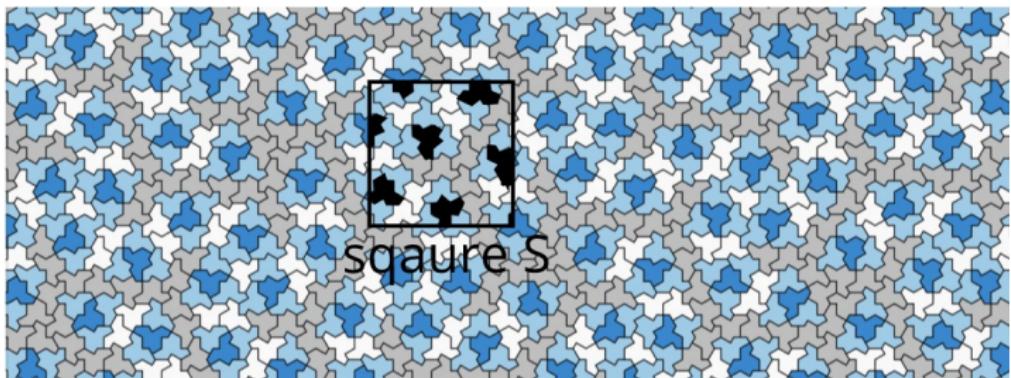
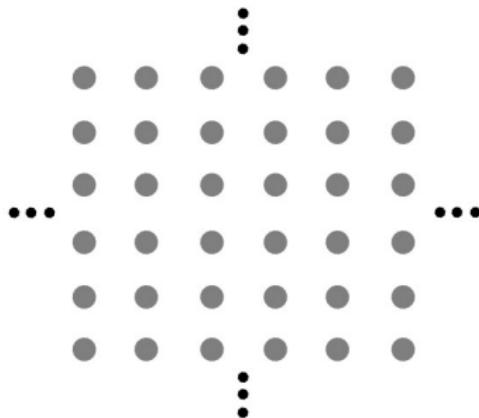


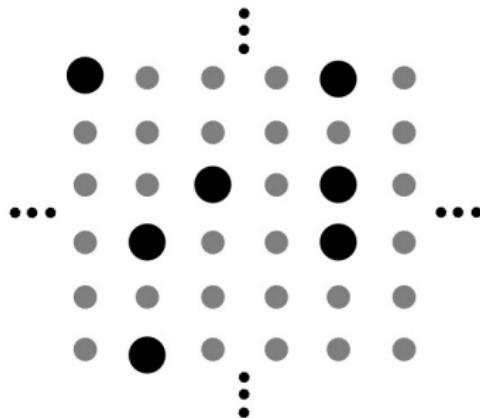
Figure by Smith, Myers, Kaplan, and Goodman-Strauss

In any **measurable** coloring of \mathbb{R}^2 with finitely many colors, some color class has positive upper density.

To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$.

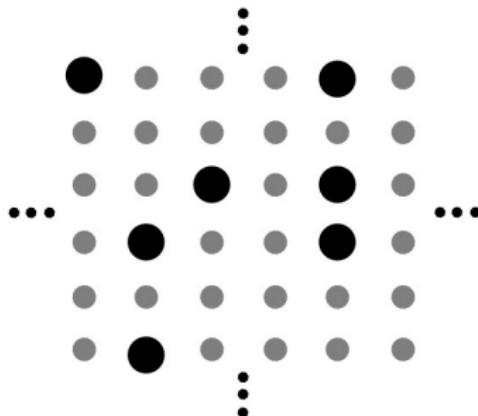


To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$.



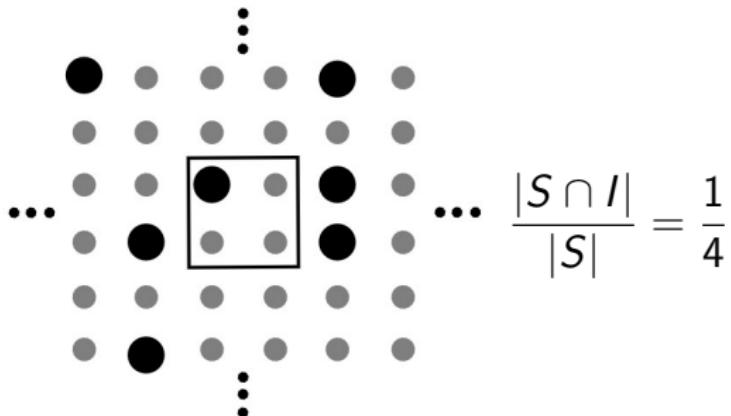
To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



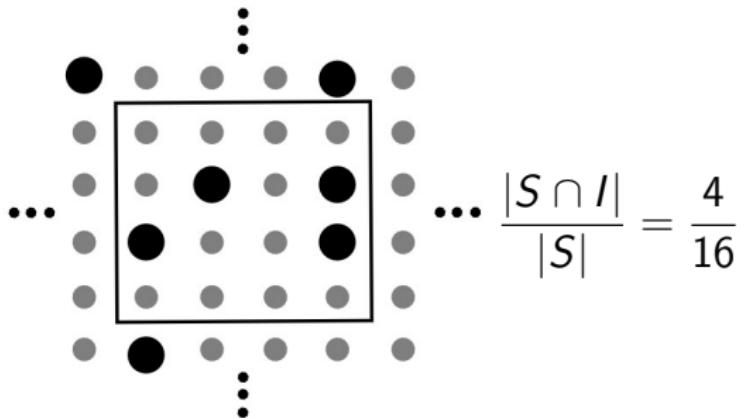
To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



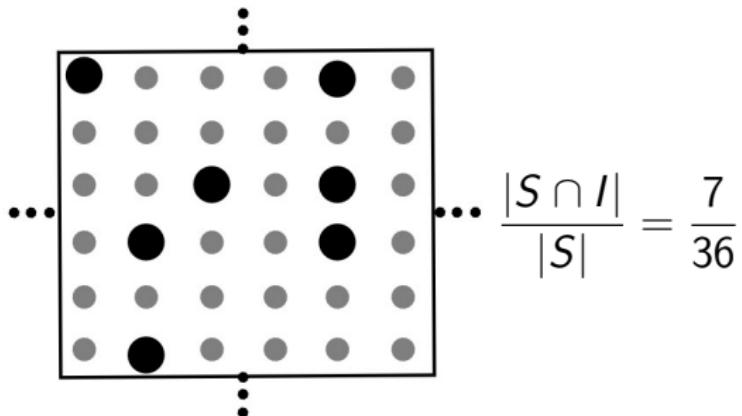
To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



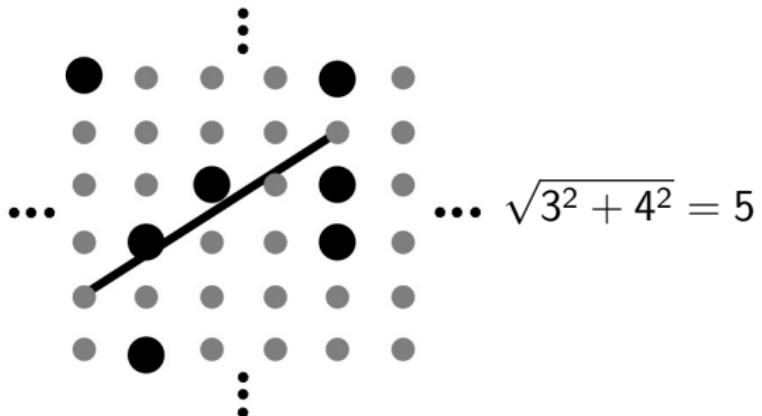
To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

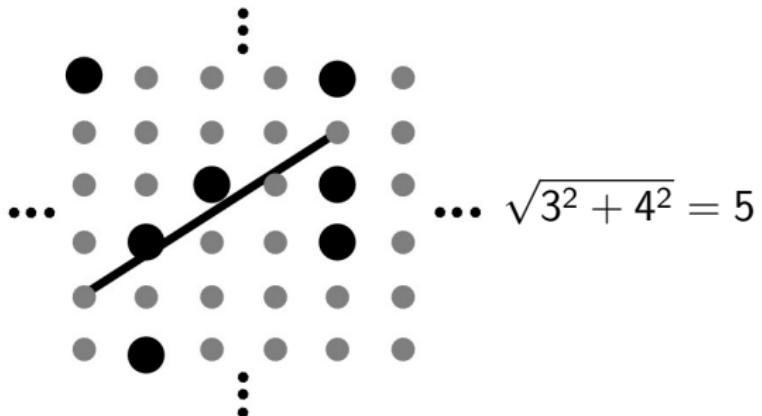
$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**.

To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

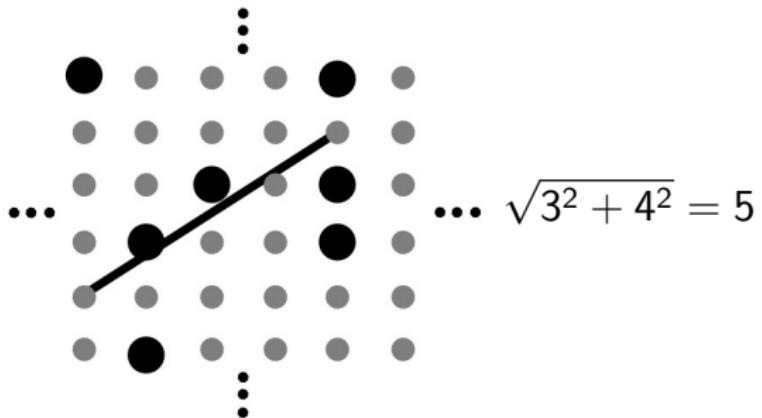
$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **2-colorable**.

To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

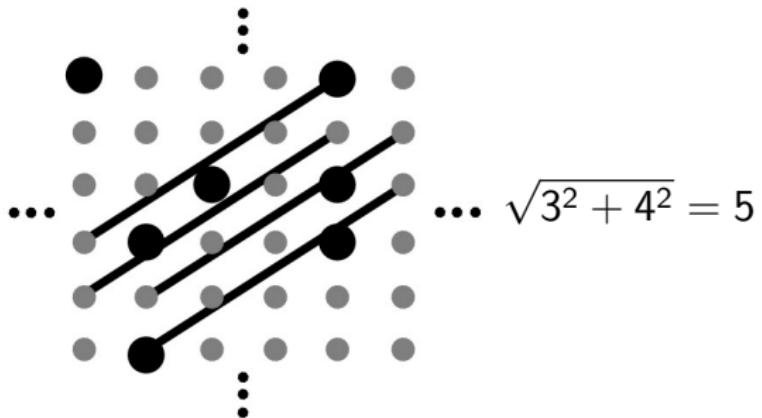
$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **2-colorable**. So we define a different graph on \mathbb{Z}^2 which **embeds** into the prime distance graph on \mathbb{R}^2 .

To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

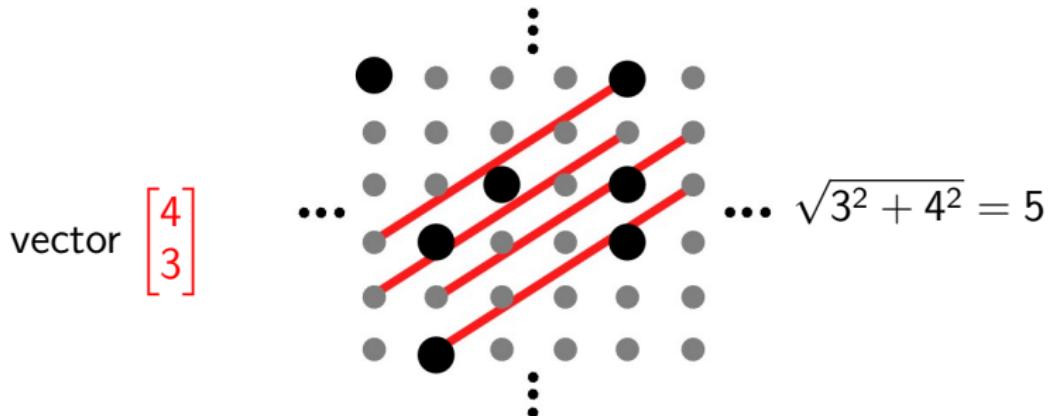
$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **2-colorable**. So we define a different graph on \mathbb{Z}^2 which **embeds** into the prime distance graph on \mathbb{R}^2 .

To define “density” in the **non-measurable** setting, we consider $I \subseteq \mathbb{Z}^2$. The set I has **positive upper density** if

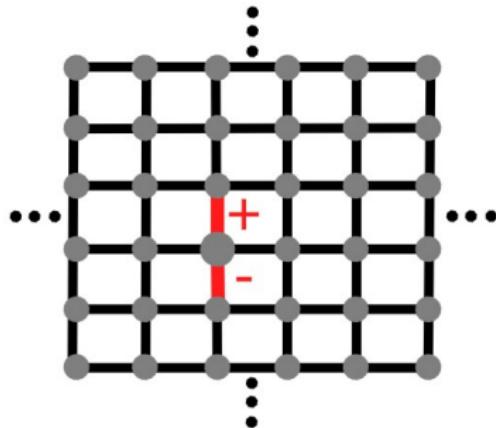
$$\limsup_{\ell \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph is actually **2-colorable**. So we define a different graph on \mathbb{Z}^2 which **embeds** into the prime distance graph on \mathbb{R}^2 .

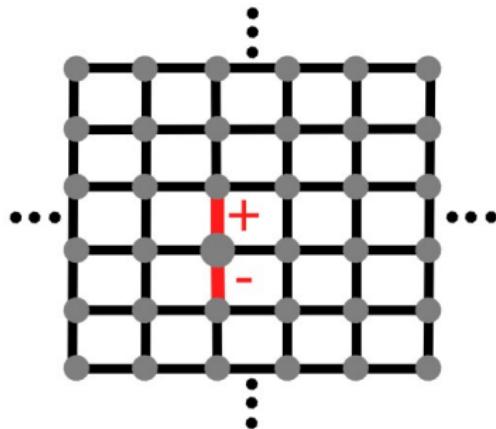
Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$



Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$



We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$X = ???$

We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$X = ???$

$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$

We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$

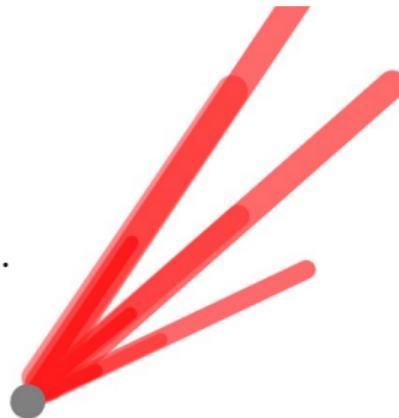
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



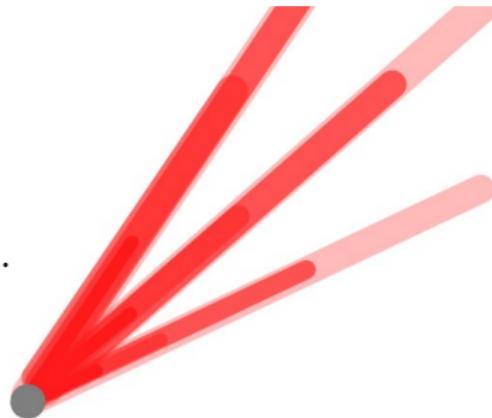
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$X = ???$

$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$



We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph.

Theorem (Davies, M., Pilipczuk 2023)

For any k , we can choose this X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.



Theorem (Davies, M., Pilipczuk 2023)

For any k , we can choose this X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

Theorem (Davies, M., Pilipczuk 2023)

For any k , we can choose this X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

Additional property: For each $u \in \mathbb{R}^2$, few $x \in X$ have $u \cdot x$ being “close to” a non-zero rational with small denominator.

Theorem (Davies, M., Pilipczuk 2023)

For any k , we can choose this X so that every **independent set** of $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Theorem (Davies 2022; inspired by the Lovász theta bound)

It suffices to find $w : \mathbb{P}X \rightarrow \mathbb{R}_{\geq 0}$ so that $w(\mathbb{P}X) = 1$ and $-\inf_{u \in \mathbb{R}^2} \sum_{x \in \mathbb{P}X} w(x) \cos(2\pi(u \cdot x)) < \epsilon$.

We really want a weight function $w : \mathbb{P} \rightarrow \mathbb{R}_{\geq 0}$ so that

$$-\inf_{\alpha \in \mathbb{R}} \sum_{p \in \mathbb{P}} w(p) \cos(2\pi\alpha) < \epsilon w(\mathbb{P}),$$

where the infimum is taken over all $\alpha \in \mathbb{R}$ which are **not** “close to” a non-zero rational with small denominator.

We really want a weight function $w : \mathbb{P} \rightarrow \mathbb{R}_{\geq 0}$ so that

$$-\inf_{\alpha \in \mathbb{R}} \sum_{p \in \mathbb{P}} w(p) \cos(2\pi\alpha) < \epsilon w(\mathbb{P}),$$

where the infimum is taken over all $\alpha \in \mathbb{R}$ which are **not** “close to” a non-zero rational with small denominator. Consider only primes $p \leq N$ and set

$$w_N(p) = \frac{1}{N} \left(1 - \frac{p}{N}\right) \log p.$$

We really want a weight function $w : \mathbb{P} \rightarrow \mathbb{R}_{\geq 0}$ so that

$$-\inf_{\alpha \in \mathbb{R}} \sum_{p \in \mathbb{P}} w(p) \cos(2\pi\alpha) < \epsilon w(\mathbb{P}),$$

where the infimum is taken over all $\alpha \in \mathbb{R}$ which are **not** “close to” a non-zero rational with small denominator.

Consider only primes $p \leq N$ and set

$$w_N(p) = \frac{1}{N} \left(1 - \frac{p}{N}\right) \log p.$$

Then $\lim_{N \rightarrow \infty} w_N(\mathbb{P}) = \frac{1}{2}$ since the average prime between 1 and N is $\sim N/2$, and the prime number theorem says

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{p \leq N} \log p = 1.$$

Question

*Is there any infinite subset $D \subseteq \mathbb{Z}$ so that the plane **can be** colored with finitely many colors so as to avoid distances in D ?*

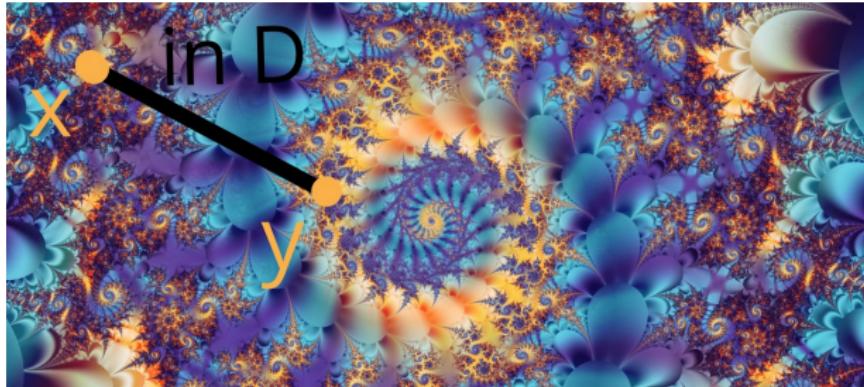


Figure by Andy Bantly

Thank you!