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Theorem (Davies)

In any coloring of the plane with finitely many colors, there
exist monochromatic x , y ∈ R2 such that ||x − y || is odd.
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Theorem (Fürstenberg, Katznelson, Weiss 1990)

This is true if each color class is measurable. In fact, the
“densest” color contains all distances d ≥ d0.

https://www.codeproject.com/Articles/353651/Visualizing-Fractals


A set I ⊆ R2 has positive upper density if

lim sup
ℓ→∞

m(S ∩ I )

m(S)
> 0.
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In any measurable coloring of R2 with finitely many colors,
some color class has positive upper density.
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Put an edge between pairs whose distance is prime. This
graph is actually 2-colorable. So we define a different graph
on Z2 which embeds into the prime distance graph on R2.
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being “close to” a non-zero rational with small denominator.



Theorem (Davies, M., Pilipczuk 2023)

For any k, we can choose this X so that every independent
set of G (Z2,PX ) has upper density < 1/k.

Theorem (Davies 2022; inspired by the Lovász theta bound)

It suffices to find w : PX → R≥0 so that w(PX ) = 1 and
− infu∈R2

∑
x∈PX w(x) cos(2π(u · x)) < ϵ.
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−infα∈R
∑
p∈P

w(p) cos(2πα) < ϵw(P),

where the infimum is taken over all α ∈ R which are not
“close to” a non-zero rational with small denominator.
Consider only primes p ≤ N and set

wN(p) =
1

N

(
1− p

N

)
log p.

Then limN→∞ wN(P) = 1
2
since the average prime between 1

and N is ∼ N/2, and the prime number theorem says

lim
N→∞

1

N

∑
p≤N

log p = 1.



Question

Is there any infinite subset D ⊆ Z so that the plane can be
colored with finitely many colors so as to avoid distances in D?
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Thank you!


