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Theorem (Davies)

In any coloring of the plane with finitely many colors, there
exist monochromatic x,y € R? such that ||x — y|| is odd.
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Theorem (Fiirstenberg, Katznelson, Weiss 1990)
This is true if each color class is measurable.
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Theorem (Davies, M., Pilipczuk 2023)

In any coloring of the plane with finitely many colors, there
exist monochromatic x,y € R? such that ||x — y|| is prime.

Theorem (Fiirstenberg, Katznelson, Weiss 1990)

This is true if each color class is measurable. In fact, the
“densest” color contains all distances d > d.
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In any measurable coloring of R? with finitely many colors,
some color class has positive upper density.
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To define “density” in the non-measurable setting, we
consider | C Z2.
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Given a finite set X of integer vectors, the Cayley graph
G(Z?,X) has edges between v and v + x for each x € X.
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For any k, we can choose this X so that every independent
set of G(Z2 PX) has upper density < 1/k.
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It follows that G(Z? PX) has chromatic number > k.
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It follows that G(Z? PX) has chromatic number > k.

Additional property: For each u € R?, few x € X have u - x
being “close to” a non-zero rational with small denominator.



Theorem (Davies, M., Pilipczuk 2023)

For any k, we can choose this X so that every independent
set of G(Z? PX) has upper density < 1/k.

Theorem (Davies 2022; inspired by the Lovész theta bound)

It suffices to find w : PX — R so that w(PX) =1 and
—infuere D cpx W(x) cos(2m(u - x)) < e.



We really want a weight function w : P — R so that

—infyer Z )cos(2rar) < ew(P),

peP

where the infimum is taken over all & € R which are not
“close to” a non-zero rational with small denominator.
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We really want a weight function w : P — R so that

—infyer Z )cos(2rar) < ew(P),

peP

where the infimum is taken over all & € R which are not
“close to” a non-zero rational with small denominator.
Consider only primes p < N and set

wy(p) = ,i, (1 - N) log p.

Then limy_,o wy(P) = 1 since the average prime between 1
and N is ~ N/2, and the prime number theorem says

i 3 loso 1.



Question

Is there any infinite subset D C 7 so that the plane can be
colored with finitely many colors so as to avoid distances in D?
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Thank you!



