

Colorings, graphs, and geometry

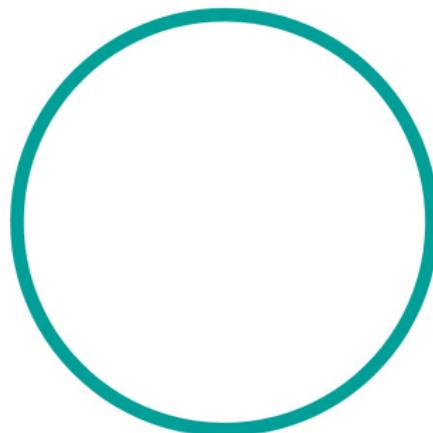
Rose McCarty

Schools of Math and CS

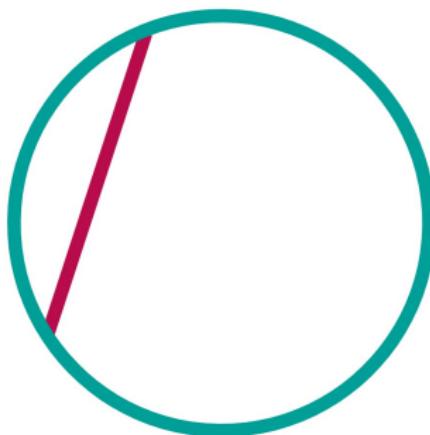
April 18th, 2024

Joint with James Davies and more...

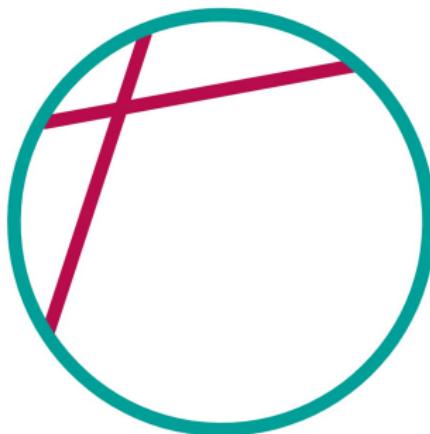
Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.



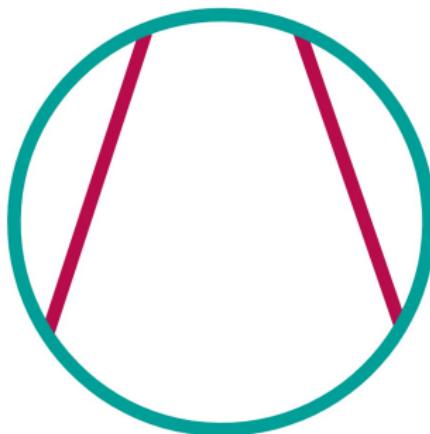
Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} .



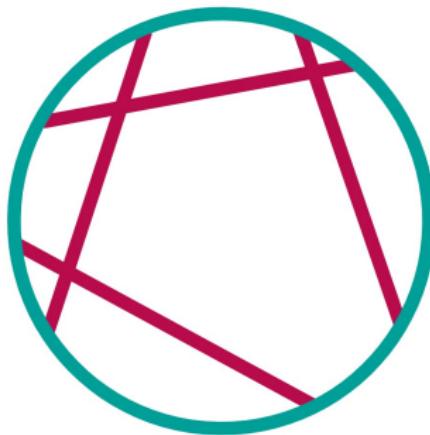
Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} .



Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} .



Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} . Fix a finite collection \mathcal{R} of chords.



Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} . Fix a finite collection \mathcal{R} of chords. Can we partition \mathcal{R} into $\leq t$ non-crossing parts?

Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} . Fix a finite collection \mathcal{R} of chords. Can we partition \mathcal{R} into $\leq t$ non-crossing parts?

One obstruction is $t + 1$ pairwise intersecting chords in \mathcal{R} .

Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} . Fix a finite collection \mathcal{R} of chords. Can we partition \mathcal{R} into $\leq t$ non-crossing parts?

One obstruction is $t + 1$ pairwise intersecting chords in \mathcal{R} .

Theorem (Gyárfás 1985)

If \mathcal{R} does not contain $t + 1$ pairwise intersecting chords, then it can be partitioned into at most $2^{2t}t^2$ non-intersecting parts.

Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} . Fix a finite collection \mathcal{R} of chords. Can we partition \mathcal{R} into $\leq t$ non-crossing parts?

One obstruction is $t + 1$ pairwise intersecting chords in \mathcal{R} .

Theorem (Kostochka and Kratochvíl 1997)

If \mathcal{R} does not contain $t + 1$ pairwise intersecting chords, then it can be partitioned into at most $50 \cdot 2^t$ non-intersecting parts.

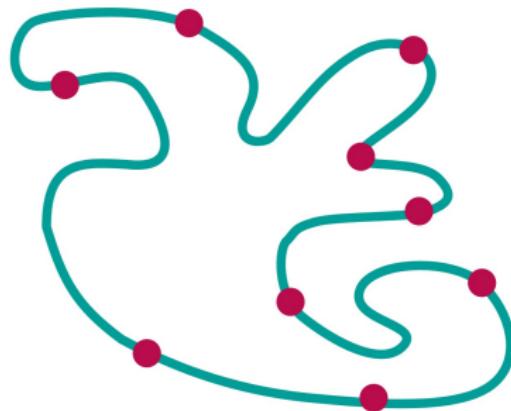
Consider the unit circle $\mathbf{C} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. A **chord** is a line segment between two points on \mathbf{C} . Fix a finite collection \mathcal{R} of chords. Can we partition \mathcal{R} into $\leq t$ non-crossing parts?

One obstruction is $t + 1$ pairwise intersecting chords in \mathcal{R} .

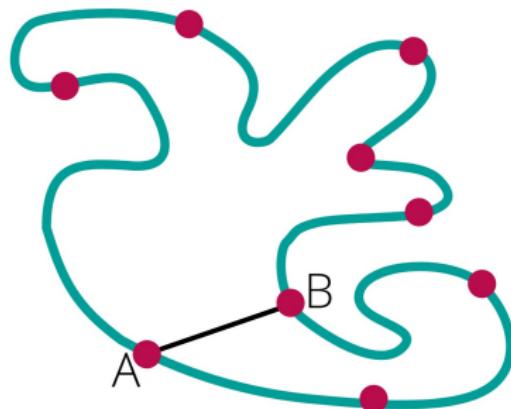
Theorem (Davies and McCarty 2021)

If \mathcal{R} does not contain $t + 1$ pairwise intersecting chords, then it can be partitioned into at most $7t^2$ non-intersecting parts.

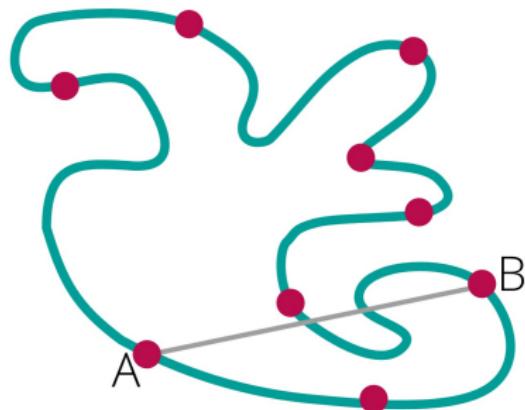
Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$.



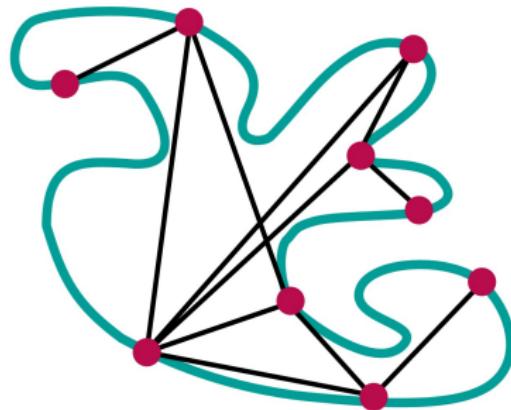
Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} .



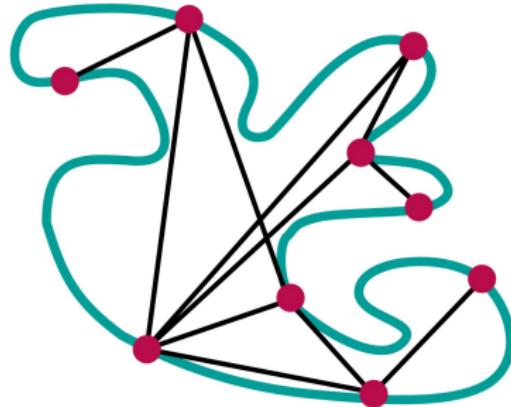
Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} .



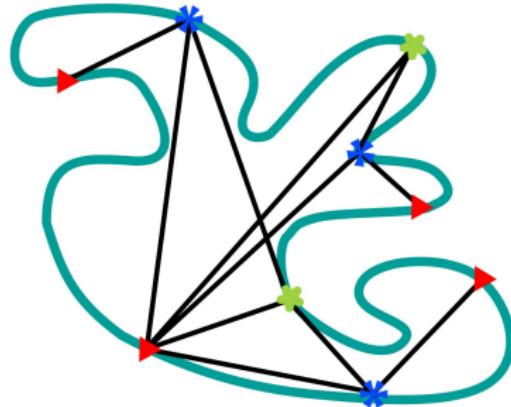
Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} .



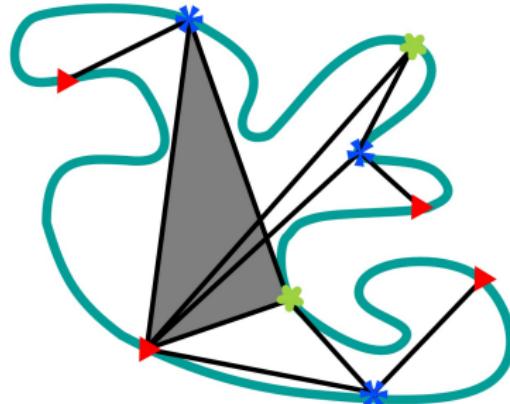
Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} . When can we partition \mathbf{P} into $\leq t$ invisible parts?



Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} . When can we partition \mathbf{P} into $\leq t$ invisible parts?

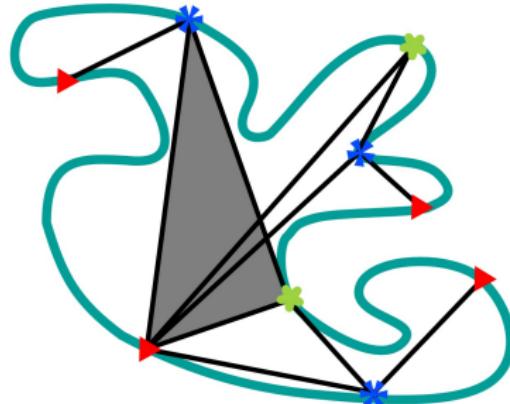


Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} . When can we partition \mathbf{P} into $\leq t$ invisible parts?



One obstruction is $t + 1$ pairwise visible points in \mathbf{P} .

Consider a Jordan curve \mathcal{J} and a finite set of points $\mathbf{P} \subset \mathcal{J}$. Two points in \mathbf{P} are **visible** if the line segment between them is inside of \mathcal{J} . When can we partition \mathbf{P} into $\leq t$ invisible parts?



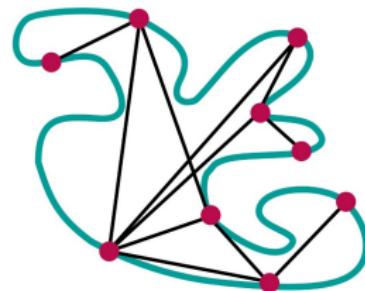
One obstruction is $t + 1$ pairwise visible points in \mathbf{P} .

Theorem (Davies, Krawczyk, McCarty, and Walczak 2021)

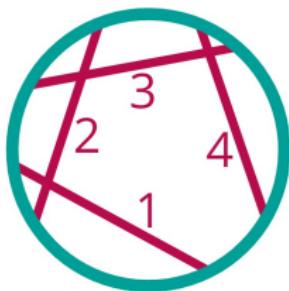
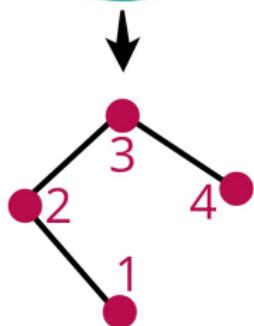
If \mathbf{P} does not contain $t + 1$ pairwise visible points, then it can be partitioned into at most 4^t invisible parts.

Babia Góra, border of Slovakia and Poland, 2019

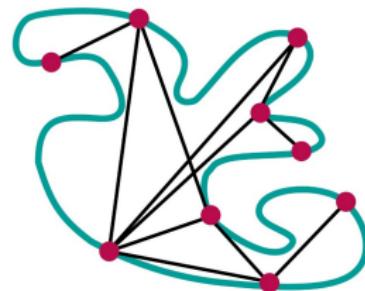
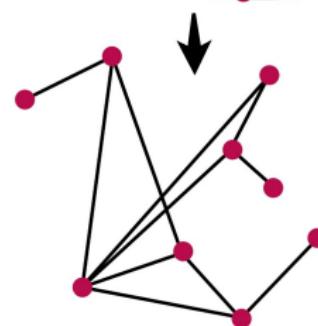
A general formulation



A general formulation



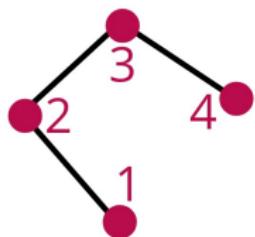
circle graph



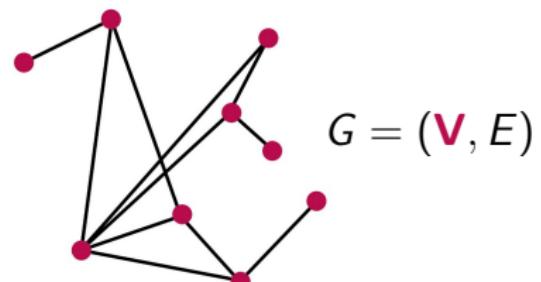
curve visibility graph

$$G = (\mathbf{V}, E)$$

A general formulation



circle graph

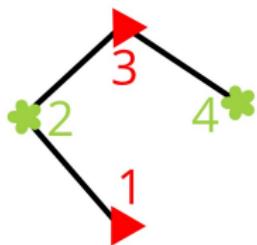


curve visibility graph

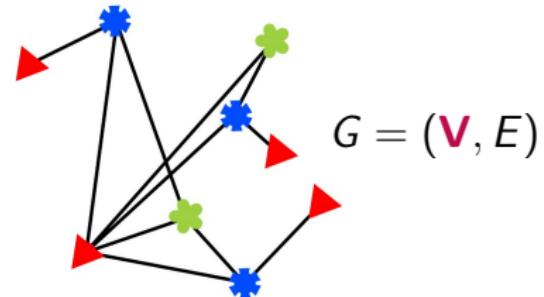
$$G = (\mathbf{V}, E)$$

A general formulation

The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in **V** different colors.



circle graph



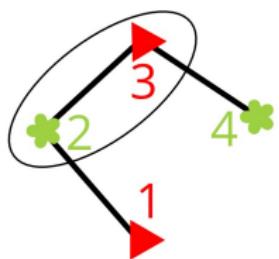
curve visibility graph

$$G = (V, E)$$

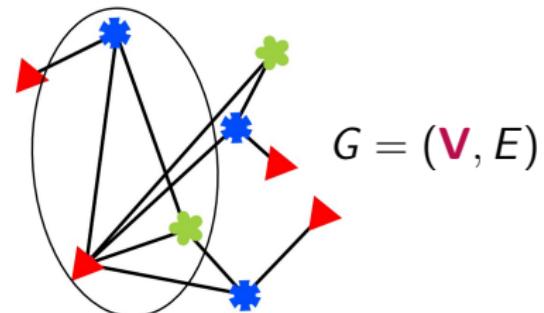
A general formulation

The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in \mathbf{V} different colors.

The **clique number** $\omega(G)$ is the maximum size of a set of pairwise adjacent vertices in \mathbf{V} .



circle graph



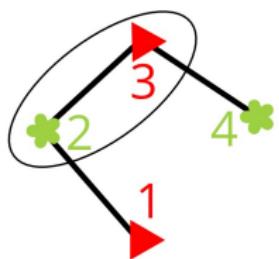
curve visibility graph

A general formulation

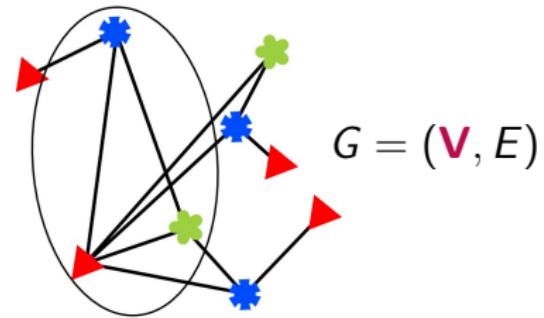
The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in \mathbf{V} different colors.

The **clique number** $\omega(G)$ is the maximum size of a set of pairwise adjacent vertices in \mathbf{V} .

$$\omega \leq \chi$$



circle graph



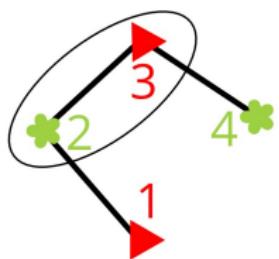
curve visibility graph

A general formulation

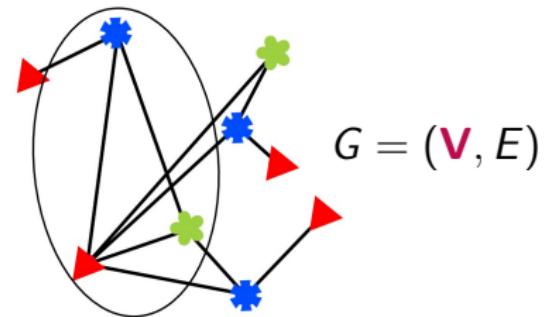
The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in \mathbf{V} different colors.

The **clique number** $\omega(G)$ is the maximum size of a set of pairwise adjacent vertices in \mathbf{V} .

$$\omega \leq \chi \leq f(\omega)$$



circle graph



curve visibility graph

A general formulation

The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in **V** different colors.

The **clique number** $\omega(G)$ is the maximum size of a set of pairwise adjacent vertices in **V**.

$$\omega \leq \chi \leq f(\omega)$$

A class of graphs is **χ -bounded** if such a function exists, and f is called a **χ -bounding function**.

A general formulation

The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in **V** different colors.

The **clique number** $\omega(G)$ is the maximum size of a set of pairwise adjacent vertices in **V**.

$$\omega \leq \chi \leq f(\omega)$$

A class of graphs is **χ -bounded** if such a function exists, and f is called a **χ -bounding function**.

Theorem (Erdős 1959)

*The class of all graphs is **not** χ -bounded.*

A general formulation

The **chromatic number** $\chi(G)$ is the minimum number of **colors** needed to assign adjacent vertices in **V** different colors.

The **clique number** $\omega(G)$ is the maximum size of a set of pairwise adjacent vertices in **V**.

$$\omega \leq \chi \leq f(\omega)$$

A class of graphs is **χ -bounded** if such a function exists, and f is called a **χ -bounding function**.

Theorem (Erdős 1959)

*The class of all graphs is **not** χ -bounded.*

Vizing's Theorem, the Strong Perfect Graph Theorem,
Gyárfás–Sumner Conjecture, ...

How quickly can an optimal
 χ -bounding function grow?

$$\chi \leq \omega$$

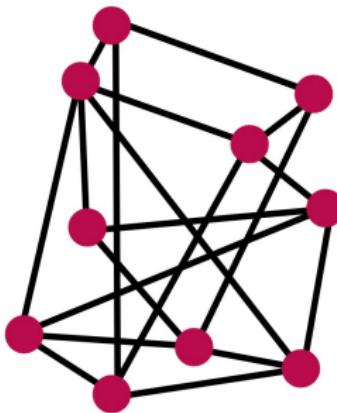
$$\chi \leq \omega^3$$

$$\chi \leq 2^\omega$$

$$\chi \leq \omega^{\omega^\omega\omega^\omega\omega^\omega}$$

...

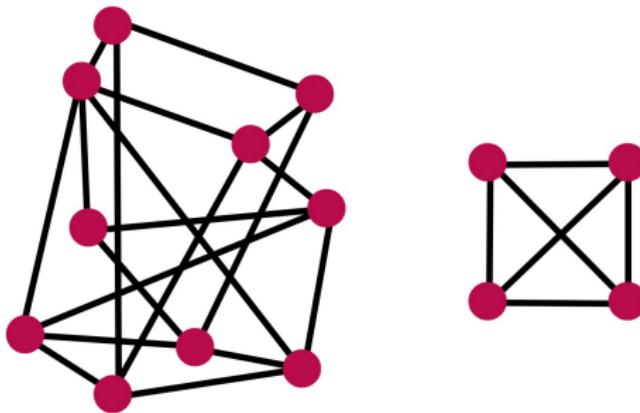
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

$$\omega(G) = 2$$

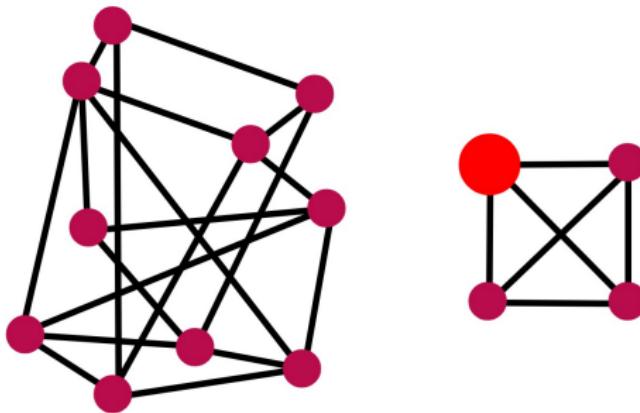
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

$$\omega(G) = 4$$

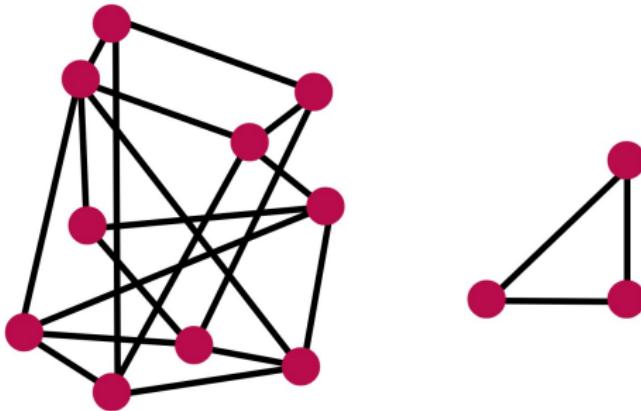
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

$$\omega(G) = 4$$

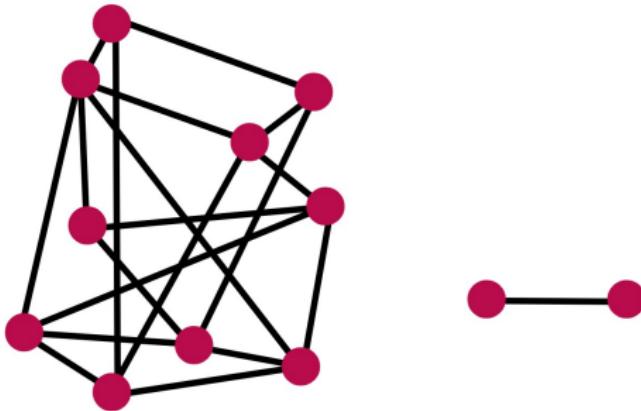
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

$$\omega(G) = 3$$

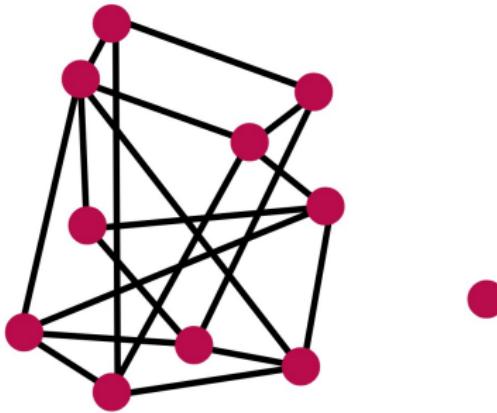
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

$$\omega(G) = 2$$

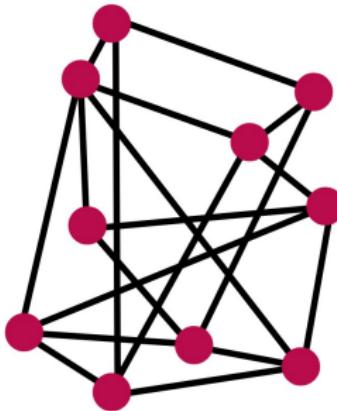
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

$$\omega(G) = 2$$

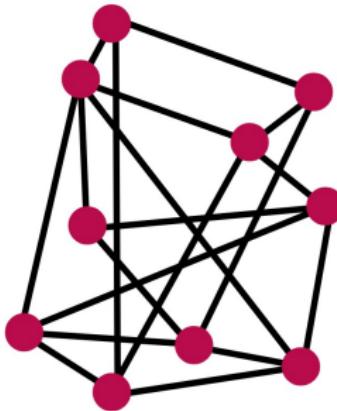
How quickly can an optimal
 χ -bounding function grow?



$$\chi(G) = k$$

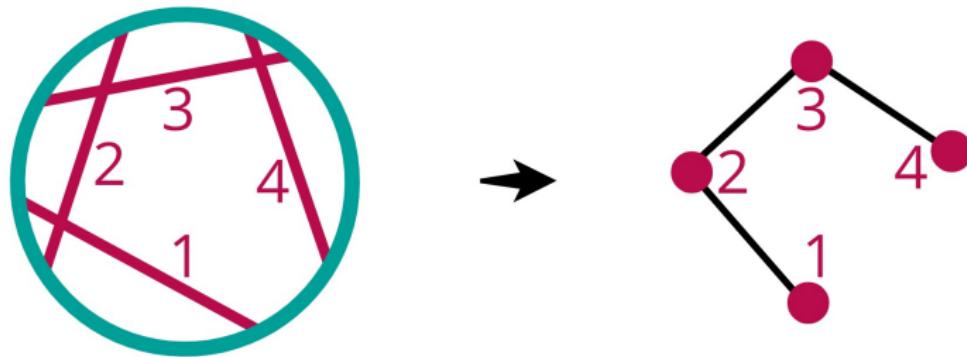
$$\omega(G) = 2$$

How quickly can an optimal
 χ -bounding function grow?



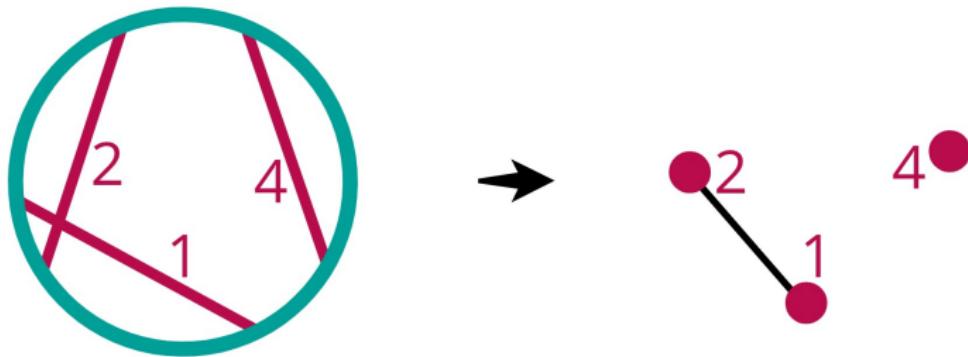
We only consider classes that are
closed under vertex-deletion.

How quickly can an optimal
 χ -bounding function grow?



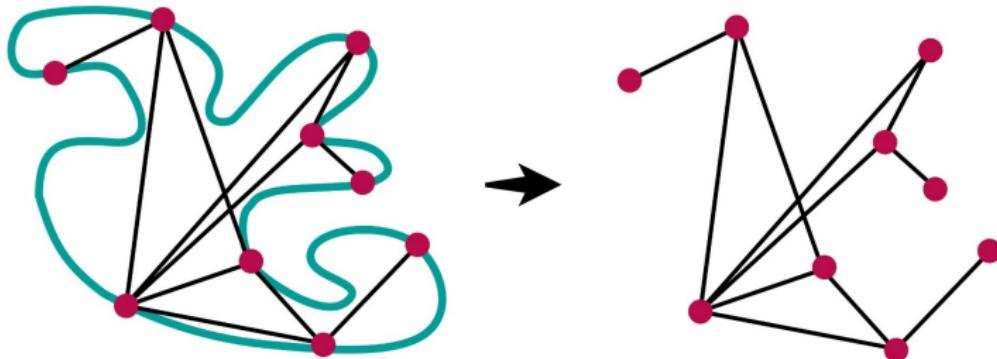
We only consider classes that are
closed under vertex-deletion.

How quickly can an optimal
 χ -bounding function grow?



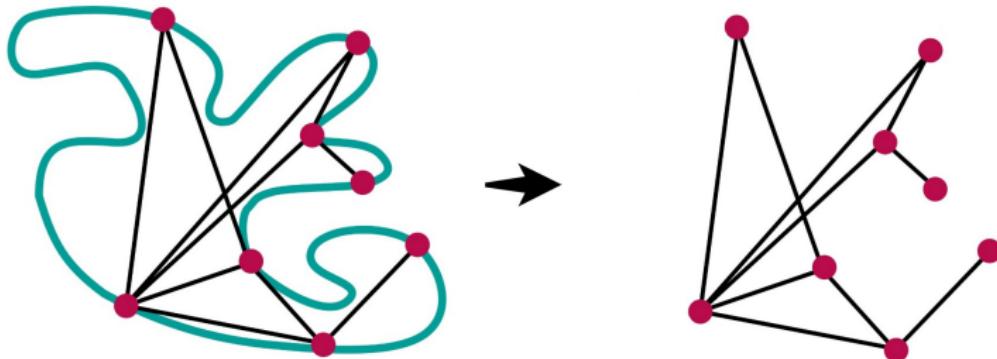
We only consider classes that are
closed under vertex-deletion.

How quickly can an optimal
 χ -bounding function grow?



We only consider classes that are
closed under vertex-deletion.

How quickly can an optimal
 χ -bounding function grow?



We only consider classes that are
closed under vertex-deletion.

How quickly can an optimal
 χ -bounding function grow?

Esperet's Conjecture

*There is always a **polynomial** χ -bounding function.*

We only consider classes that are
closed under vertex-deletion.

How quickly can an optimal χ -bounding function grow?

Esperet's Conjecture

*There is always a **polynomial** χ -bounding function.*

i.e. if $\chi \leq \omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega}}}}}}$ then $\chi \leq \omega^d$ too!

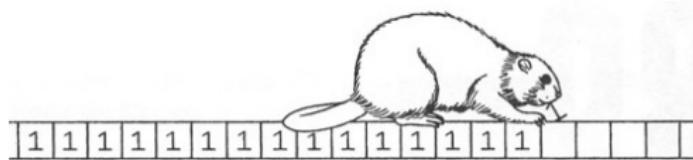


Figure from The
New Turing Omnibus,
Dewdney

We only consider classes that are closed under vertex-deletion.

How quickly can an optimal χ -bounding function grow?

Esperet's Conjecture

*There is always a **polynomial** χ -bounding function.*

i.e. if $\chi \leq \omega^{\omega^{\omega^{\omega^{\omega^{\omega}}}}}$ then $\chi \leq \omega^d$ too!

Theorem (Briański, Davies, and Walczak 2023)

*Actually, optimal χ -bounding functions can grow **arbitrarily quickly**.*

We only consider classes that are closed under vertex-deletion.

Theorem (Erdős 1959)

*The class of all graphs is **not** χ -bounded.*

Theorem (Davies, McCarty, and Pilipczuk 2024+)

*The class of all **prime distance graphs** is **not** χ -bounded.*

Theorem (Davies, McCarty, and Pilipczuk 2024+)

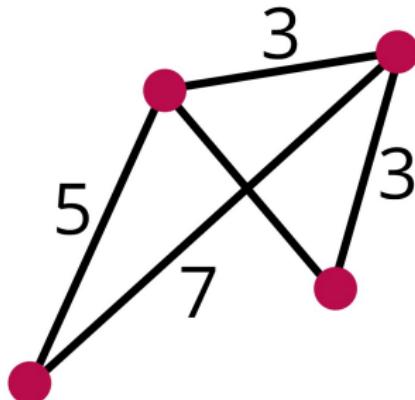
*The class of all **prime distance graphs** is **not** χ -bounded.*

Let $\mathbf{P} \subseteq \mathbb{R}^2$.

Theorem (Davies, McCarty, and Pilipczuk 2024+)

*The class of all **prime distance graphs** is **not** χ -bounded.*

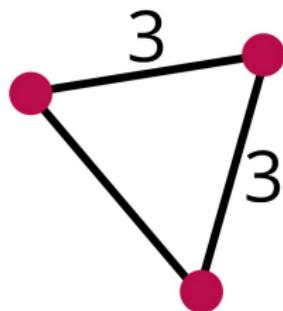
Let $\mathbf{P} \subseteq \mathbb{R}^2$. Put an edge between $x, y \in \mathbf{P}$ if $\|x - y\|$ is **prime**.



Theorem (Davies, McCarty, and Pilipczuk 2024+)

*The class of all **prime distance graphs** is **not** χ -bounded.*

Let $\mathbf{P} \subseteq \mathbb{R}^2$. Put an edge between $x, y \in \mathbf{P}$ if $||x - y||$ is **prime**.

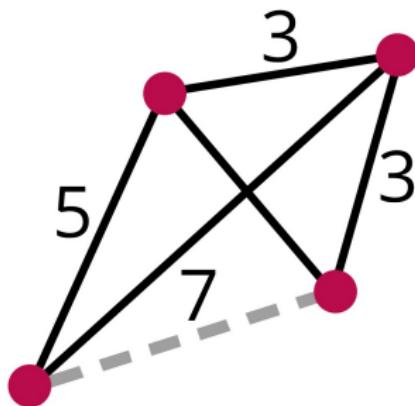


Theorem (Davies, McCarty, and Pilipczuk 2024+)

The class of all prime distance graphs is not χ -bounded.

Let $\mathbf{P} \subseteq \mathbb{R}^2$. Put an edge between $x, y \in \mathbf{P}$ if $\|x - y\|$ is prime.

There is no 4-vertex clique (Graham, Rothschild, and Straus 1974).



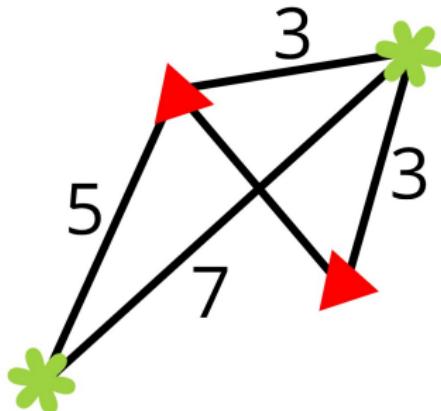
Theorem (Davies, McCarty, and Pilipczuk 2024+)

The class of all prime distance graphs is not χ -bounded.

Let $\mathbf{P} \subseteq \mathbb{R}^2$. Put an edge between $x, y \in \mathbf{P}$ if $\|x - y\|$ is prime.

There is no 4-vertex clique (Graham, Rothschild, and Straus 1974).

Our Theorem: For all k , there exists such a graph with $\chi \geq k$.



Theorem (Davies, McCarty, and Pilipczuk 2024+)

*In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is **prime**.*

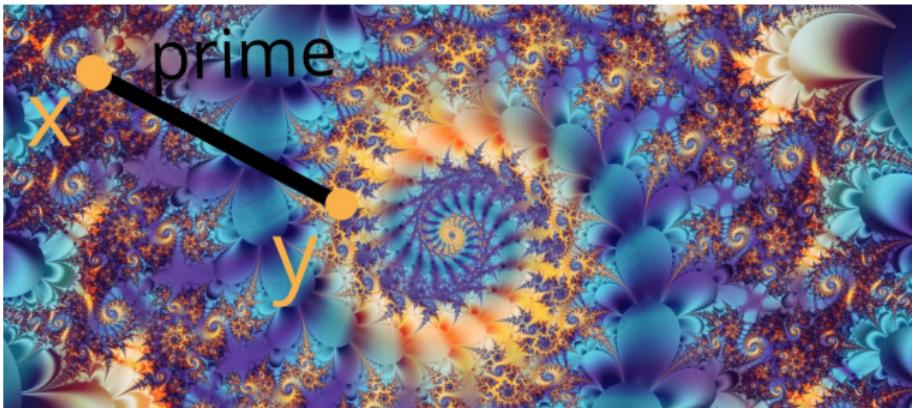
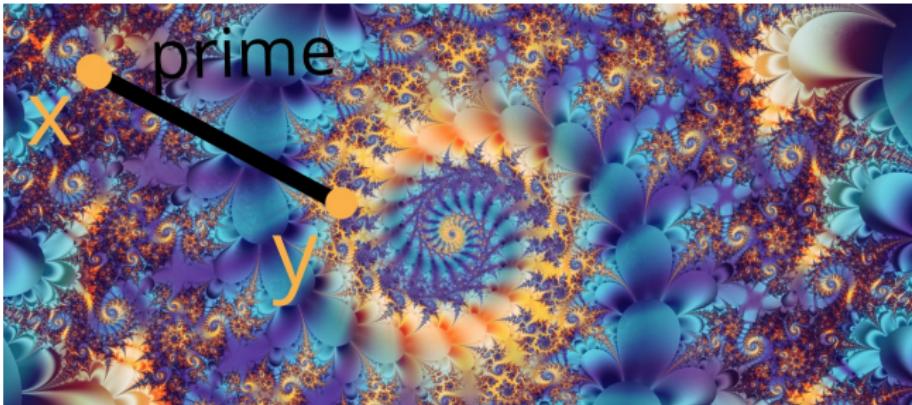


Figure by Andy Bantly

Theorem (Davies, McCarty, and Pilipczuk 2024+)

*In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is **prime**.*

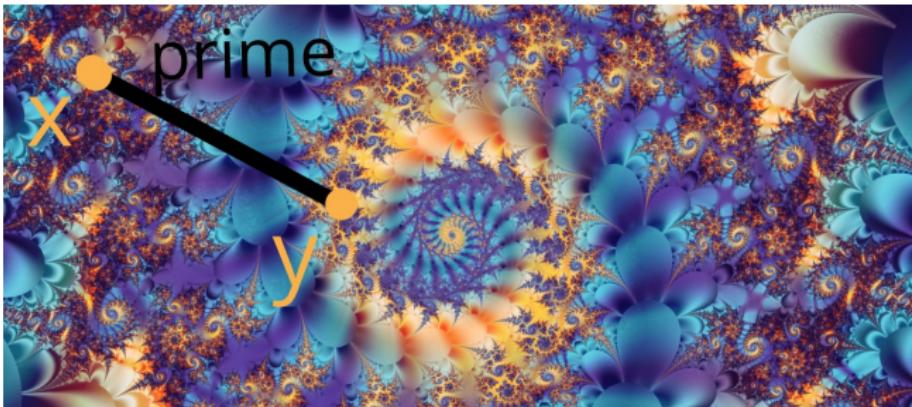


Theorem (Fürstenberg, Katznelson, Weiss 1990)

*This is true if each color class is **measurable**.*

Theorem (Davies, McCarty, and Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist $x, y \in \mathbb{R}^2$ of the same color such that $\|x - y\|$ is prime.



Theorem (Fürstenberg, Katznelson, Weiss 1990)

This is true if each color class is measurable. In fact, the "densest" color contains all sufficiently large distances in \mathbb{R} .

A measurable set $I \subseteq \mathbb{R}^2$ has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{m(S \cap I)}{m(S)} > 0.$$

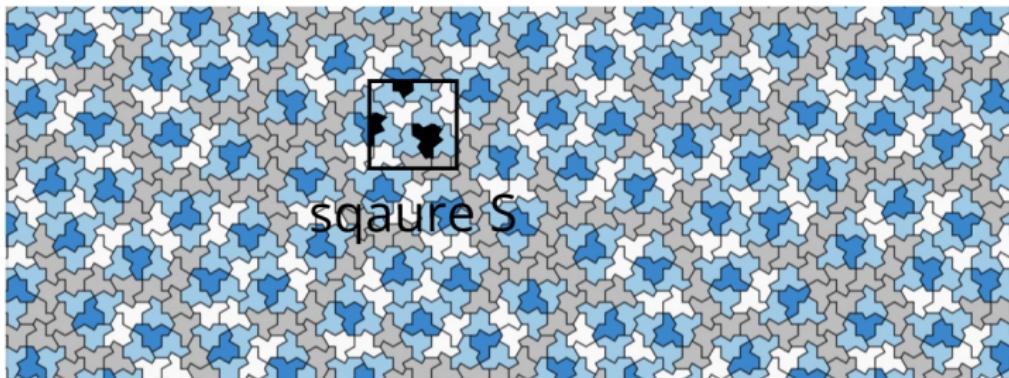


Figure by Smith, Myers, Kaplan, and Goodman-Strauss

A measurable set $I \subseteq \mathbb{R}^2$ has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{m(S \cap I)}{m(S)} > 0.$$

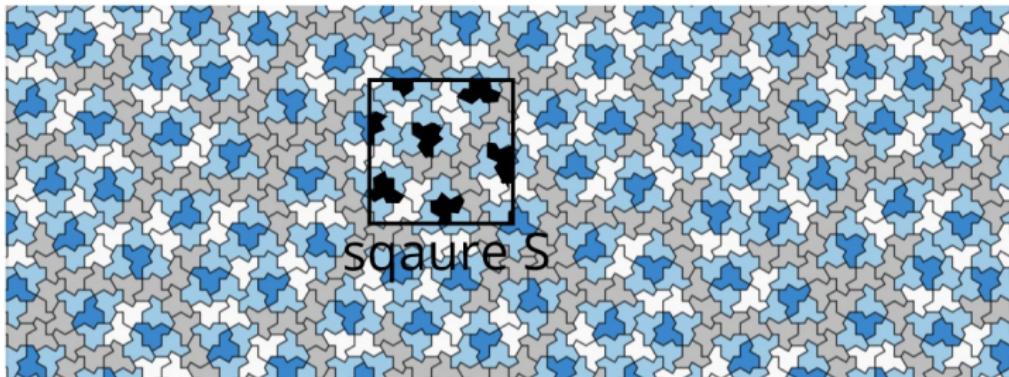


Figure by Smith, Myers, Kaplan, and Goodman-Strauss

A measurable set $I \subseteq \mathbb{R}^2$ has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{m(S \cap I)}{m(S)} > 0.$$

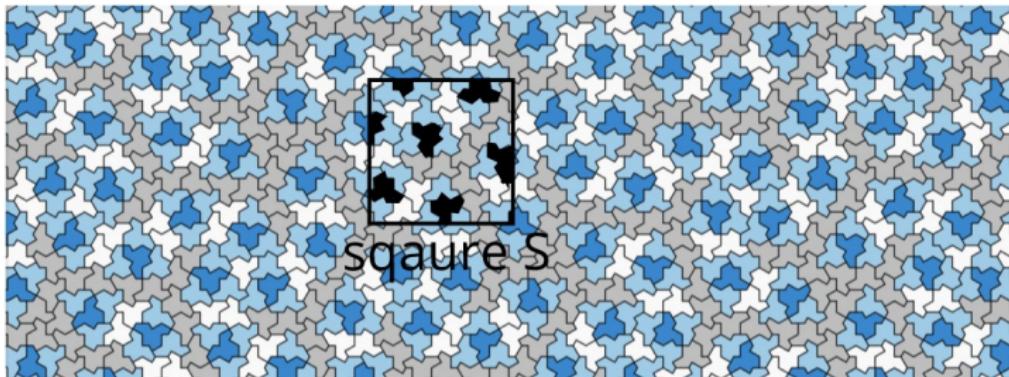
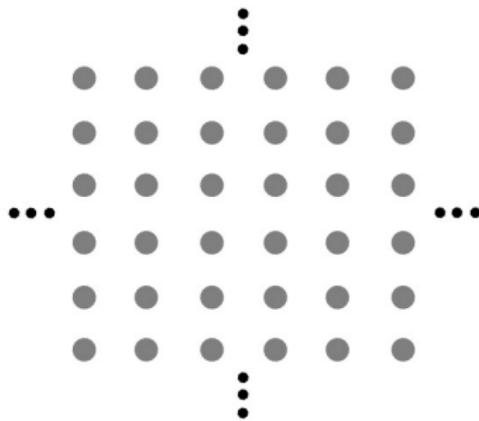


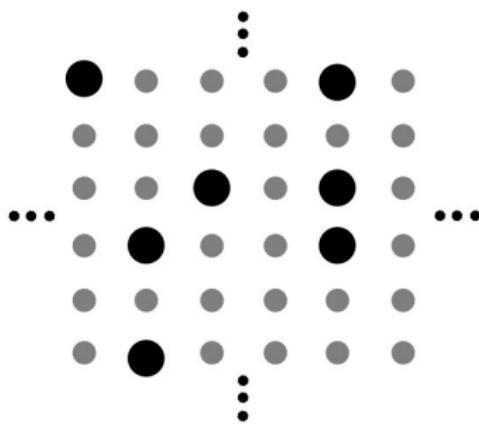
Figure by Smith, Myers, Kaplan, and Goodman-Strauss

Fact: In any **measurable** coloring of \mathbb{R}^2 with finitely many colors, there exists a color of positive upper density.

To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.

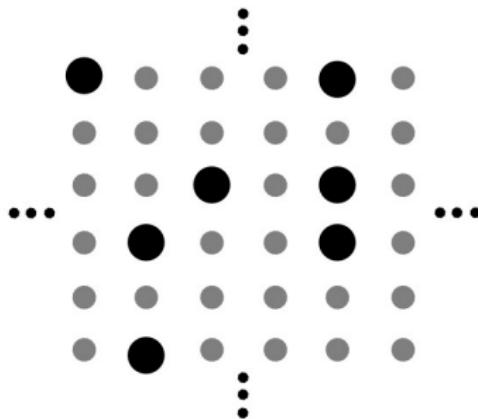


To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.



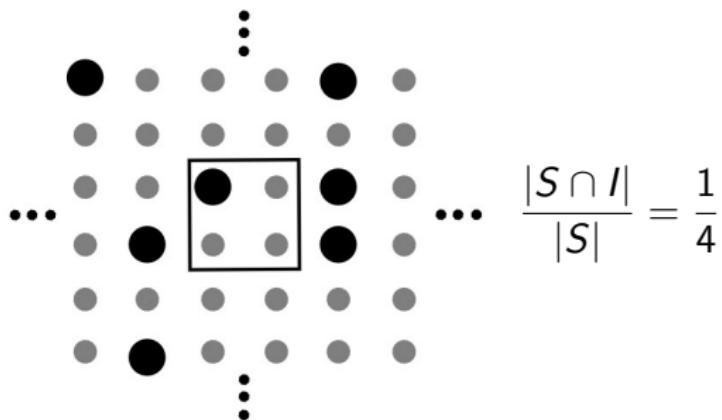
To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



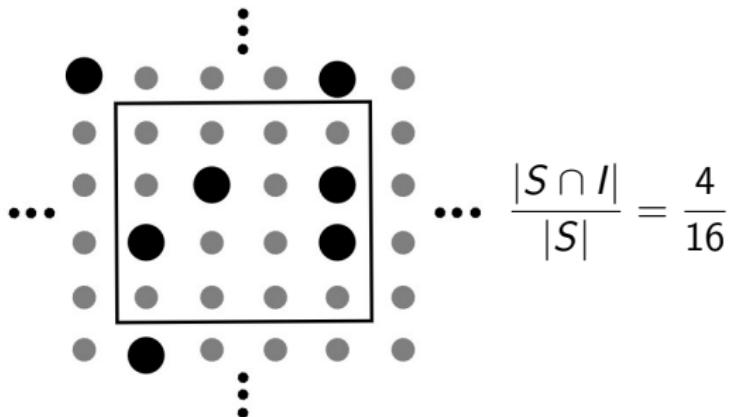
To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



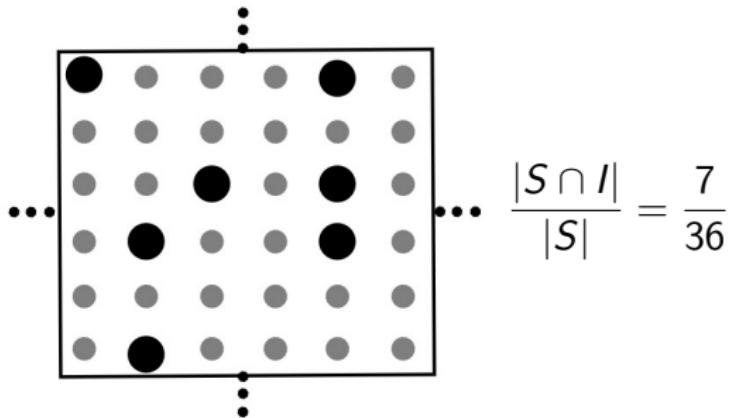
To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



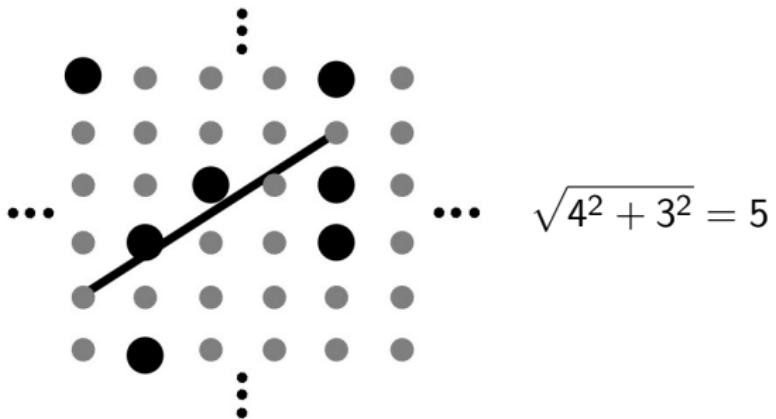
To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

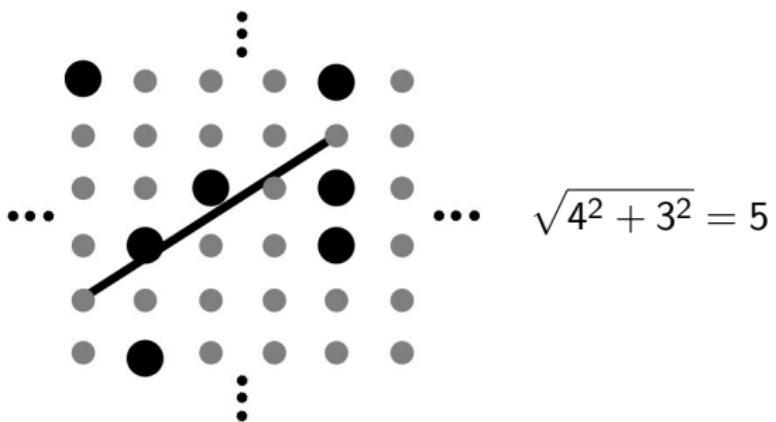
$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**.

To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

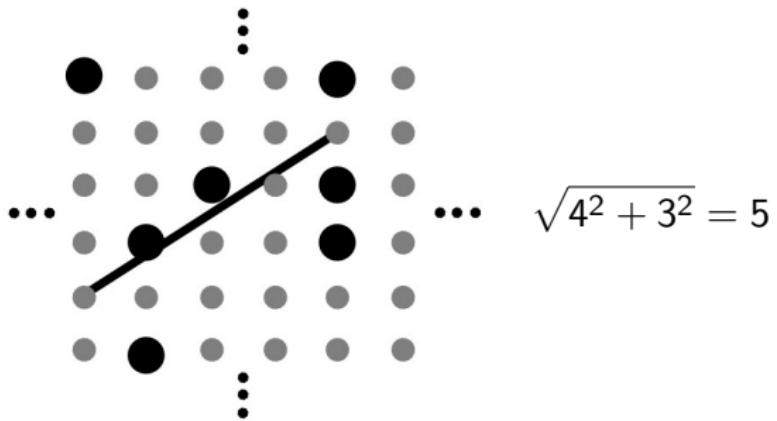
$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph actually has **chromatic number 2** :(.

To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

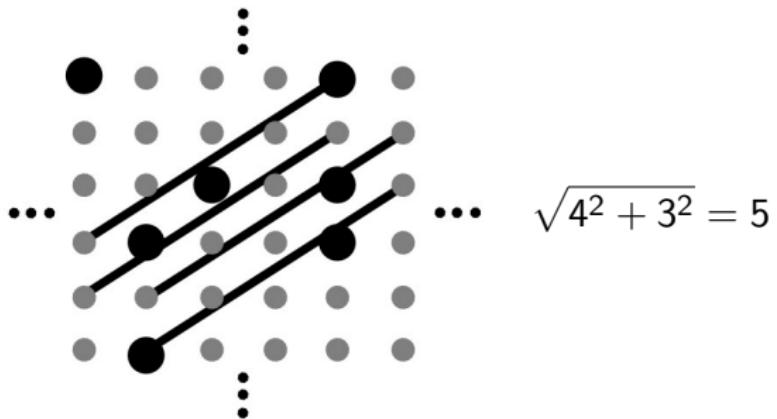
$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph actually has **chromatic number** 2 :(. So we define a different graph on \mathbb{Z}^2 which **embeds** in the prime distance graph on \mathbb{R}^2 .

To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

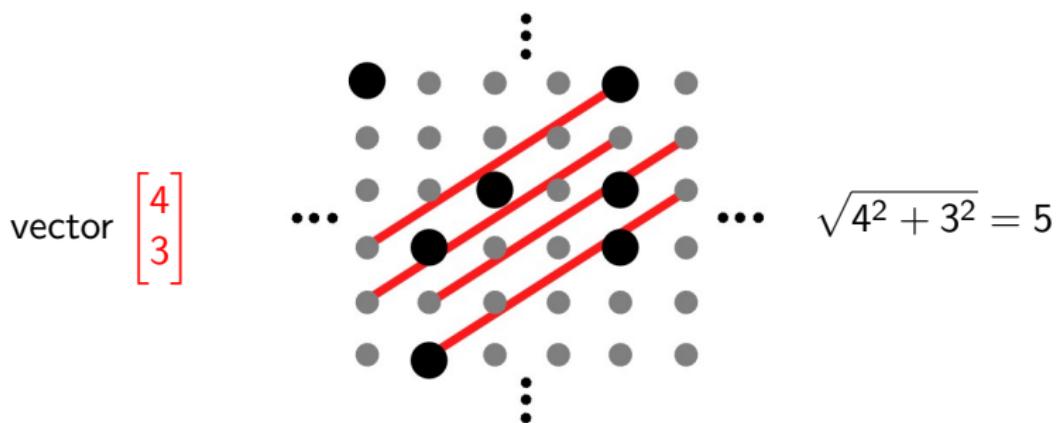
$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph actually has **chromatic number** 2 :(. So we define a different graph on \mathbb{Z}^2 which **embeds** in the prime distance graph on \mathbb{R}^2 .

To define “density” in the **non-measurable** setting, let $I \subseteq \mathbb{Z}^2$.
The set I has **positive upper density** if

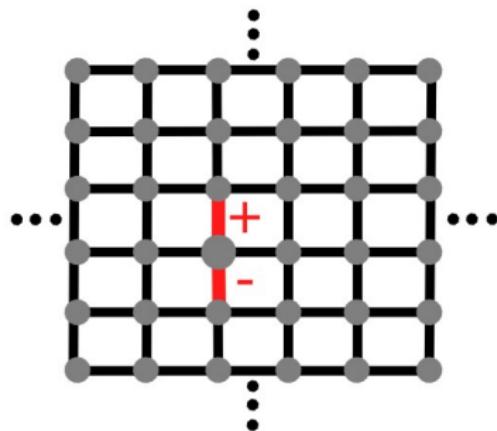
$$\limsup_{|S| \rightarrow \infty} \frac{|S \cap I|}{|S|} > 0.$$



Put an edge between pairs whose distance is **prime**. This graph actually has **chromatic number** 2 :(. So we define a different graph on \mathbb{Z}^2 which **embeds** in the prime distance graph on \mathbb{R}^2 .

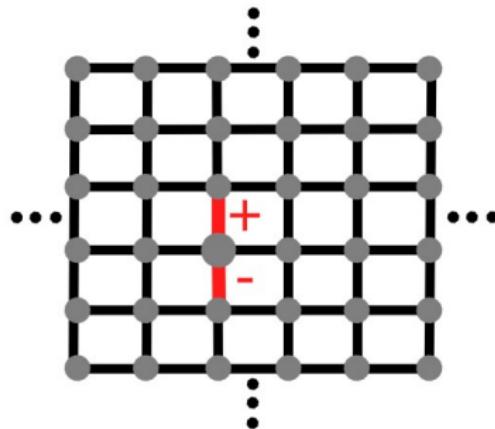
Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$



Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$



We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph on \mathbb{R}^2 .

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$X = ???$

We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph on \mathbb{R}^2 .

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$

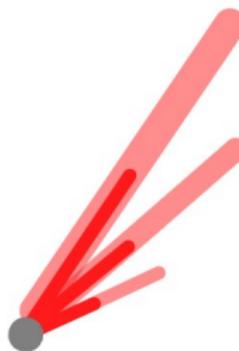
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph on \mathbb{R}^2 .

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



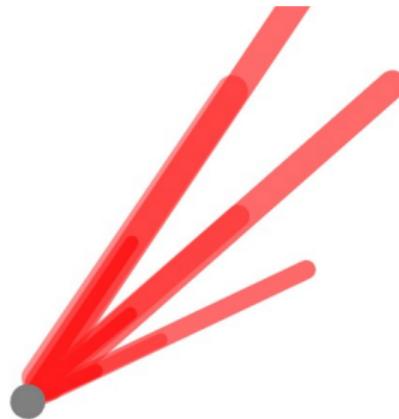
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph on \mathbb{R}^2 .

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



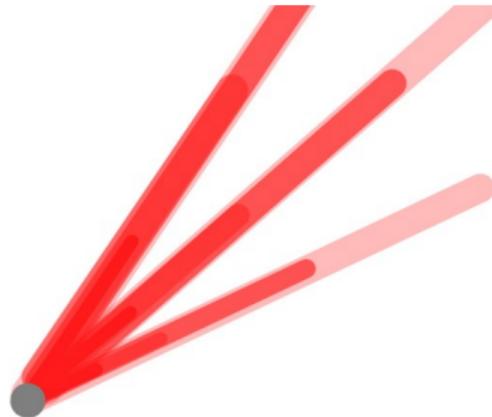
We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph on \mathbb{R}^2 .

Given a finite set X of integer vectors, the **Cayley graph** $G(\mathbb{Z}^2, X)$ has edges between v and $v \pm x$ for each $x \in X$.

$$X = ???$$

$$\mathbb{P}X = 2X \cup 3X \cup 5X \cup 7X \cup \dots$$



We define a particular X so that

- the vectors in X have different directions, and
- $G(\mathbb{Z}^2, \mathbb{P}X)$ embeds in the prime distance graph on \mathbb{R}^2 .

Theorem (Davies, McCarty, and Pilipczuk 2024+)

*For any k , we can choose X so that every **edgeless set** of vertices in $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

Theorem (Davies, McCarty, and Pilipczuk 2024+)

*For any k , we can choose X so that every **edgeless set** of vertices in $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.*

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k , we can choose X so that every **edgeless set** of vertices in $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

Additional property of X : For each $u \in \mathbb{R}^2$, few $x \in X$ have $u \cdot x$ being “close to” a non-zero rational with small denominator.

Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k , we can choose X so that every **edgeless set** of vertices in $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Few $x \in X$ have
 $||u \cdot x - \frac{a}{b}|| < \epsilon$
for coprime a, b
with $|b|$ small.

It follows that $G(\mathbb{Z}^2, \mathbb{P}X)$ has **chromatic number** $> k$.

Additional property of X : For each $u \in \mathbb{R}^2$, few $x \in X$ have $u \cdot x$ being “close to” a non-zero rational with small denominator.

Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k , we can choose X so that every **edgeless set** of vertices in $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

Few $x \in X$ have
 $||u \cdot x - \frac{a}{b}|| < \epsilon$
for coprime a, b
with $|b|$ small.

Theorem (Davies 2024; inspired by the Lovász theta bound)

It suffices to find a **weight function** $w : \mathbb{P}X \rightarrow \mathbb{R}_{\geq 0}$ so that
 $w(\mathbb{P}X) = 1$ and $-\inf_{u \in \mathbb{R}^2} \sum_{x \in \mathbb{P}X} w(x) \cos(2\pi(u \cdot x)) < \epsilon$.

Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k , we can choose X so that every **edgeless set** of vertices in $G(\mathbb{Z}^2, \mathbb{P}X)$ has **upper density** $< 1/k$.

The **prime number theorem** says that

$$\sum_{p \leq N} \frac{\log p}{N} \rightarrow 1$$

as $N \rightarrow \infty$.

Few $x \in X$ have
 $||u \cdot x - \frac{a}{b}|| < \epsilon$
for coprime a, b
with $|b|$ small.

Theorem (Davies 2024; inspired by the Lovász theta bound)

It suffices to find a **weight function** $w : \mathbb{P}X \rightarrow \mathbb{R}_{\geq 0}$ so that
 $w(\mathbb{P}X) = 1$ and $-\inf_{u \in \mathbb{R}^2} \sum_{x \in \mathbb{P}X} w(x) \cos(2\pi(u \cdot x)) < \epsilon$.

Question (Davies, McCarty, and Pilipczuk 2024+)

Is there any infinite set $D \subseteq \mathbb{Z}$ so that the plane can be colored with finitely many colors so as to avoid distances in D ?

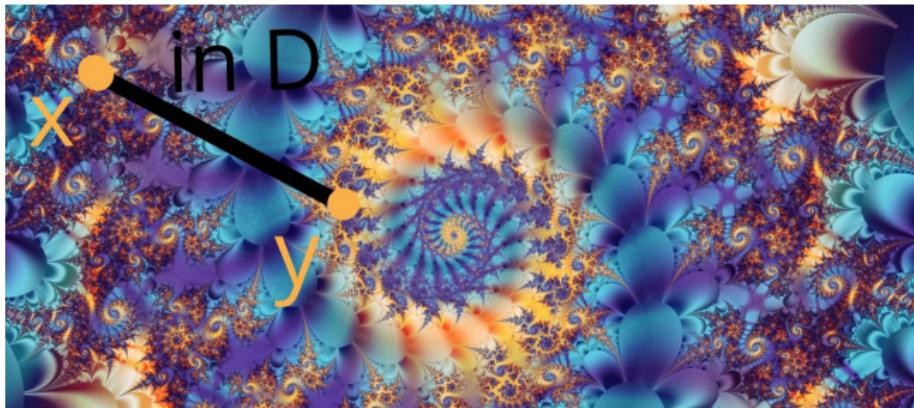
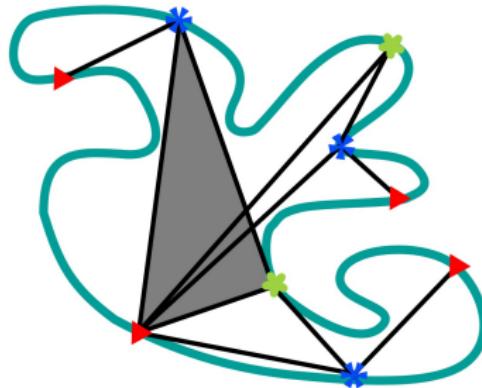


Figure by Andy Bantly

Question (Davies, McCarty, and Pilipczuk 2024+)

Is there any infinite set $D \subseteq \mathbb{Z}$ so that the plane can be colored with finitely many colors so as to avoid distances in D ?



Question (Davies, Krawczyk, McCarty, and Walczak 2021)

Is there a polynomial p so that curve visibility graphs with clique number ω have chromatic number $\leq p(\omega)$?

Thank you!

Puerto Rico, 2023