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can be partitioned into at most 2 non-intersecting parts.
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Consider the unit circle C = {(x,y) € R? : x> + y? = 1}. A chord
is a line segment between two points on C. Fix a finite collection
R of chords. Can we partition R into < t non-crossing parts?

One obstruction is t + 1 pairwise intersecting chords in R.

Theorem (Davies and McCarty 2021)

If R does not contain t + 1 pairwise intersecting chords, then it
can be partitioned into at most 7t2 non-intersecting parts.
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Consider a Jordan curve 7 and a finite set of points P C 7. Two
points in P are visible if the line segment between them is inside
of 7. When can we partition P into < t invisible parts?

One obstruction is t + 1 pairwise visible points in P.

Theorem (Davies, Krawczyk, McCarty, and Walczak 2021)

If P does not contain t + 1 pairwise visible points, then it can be
partitioned into at most 4* invisible parts.



Babia Géra, border of Slovakia and Poland, 2019
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A general formulation

The chromatic number x(G) is the minimum number of colors
needed to assign adjacent vertices in V different colors.

The clique number w(G) is the maximum size of a set of pairwise
adjacent vertices in V.

w < x< f(w)

A class of graphs is x-bounded if such a function exists, and f is
called a y-bounding function.

Theorem (Erdés 1959)
The class of all graphs is not x-bounded.

Vizing's Theorem, the Strong Perfect Graph Theorem,
Gyarfas—Sumner Conjecture, ...
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How quickly can an optimal
x-bounding function grow?

Esperet's Conjecture
There is always a polynomial x-bounding function.

w
ww

e if y <w  then y < w tool!

Theorem (Brianski, Davies, and Walczak 2023)
Actually, optimal x-bounding functions can grow arbitrarily
quickly.

We only consider classes that are
closed under vertex-deletion.
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Theorem (Davies, McCarty, and Pilipczuk 2024+)

The class of all prime distance graphs is not x-bounded.

Let P C R?. Put an edge between x,y € P if ||[x — y|| is prime.
There is no 4-vertex clique (Graham, Rothschild, and Straus 1974).
Our Theorem: For all k, there exists such a graph with x > k.
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Theorem (Davies, McCarty, and Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist
x,y € R? of the same color such that ||x — y|| is prime.

Figure by Andy Bantly
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Theorem (Davies, McCarty, and Pilipczuk 2024+)

In any coloring of the plane with finitely many colors, there exist
x,y € R? of the same color such that ||x — y|| is prime.

Theorem (Fiirstenberg, Katznelson, Weiss 1990)

This is true if each color class is measurable. In fact, the
“densest” color contains all sufficiently large distances in R.


https://www.codeproject.com/Articles/353651/Visualizing-Fractals
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Figure by Smith, Myers, Kaplan, and Goodman-Strauss

Fact: In any measurable coloring of R? with finitely many colors,
there exists a color of positive upper density.
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To define “density” in the non-measurable setting, let | C Z2.
The set I has positive upper density if
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Put an edge between pairs whose distance is prime. This graph
actually has chromatic number 2 :(. So we define a different
graph on Z? which embeds in the prime distance graph on R2.



Given a finite set X of integer vectors, the Cayley graph G(Z?, X)
has edges between v and v + x for each x € X.




Given a finite set X of integer vectors, the Cayley graph G(Z?, X)
has edges between v and v &£ x for each x € X.

We define a particular X so that
@ the vectors in X have different directions, and
o G(Z?,PX) embeds in the prime distance graph on R?.



Given a finite set X of integer vectors, the Cayley graph G(Z?, X)
has edges between v and v &£ x for each x € X.

X =777

We define a particular X so that
@ the vectors in X have different directions, and
o G(Z?,PX) embeds in the prime distance graph on R?.



Given a finite set X of integer vectors, the Cayley graph G(Z?, X)
has edges between v and v &£ x for each x € X.

X =17

PX =2XU3XUBXU7TXU...

We define a particular X so that
@ the vectors in X have different directions, and
o G(Z?,PX) embeds in the prime distance graph on R?.



Given a finite set X of integer vectors, the Cayley graph G(Z?, X)
has edges between v and v &£ x for each x € X.

X =17

PX =2XU3XUBXUTXU...

We define a particular X so that
@ the vectors in X have different directions, and
o G(Z?,PX) embeds in the prime distance graph on R?.



Given a finite set X of integer vectors, the Cayley graph G(Z2, X)
has edges between v and v 4 x for each x € X.

X =777

PX =2XU3XUBXUTXU...

We define a particular X so that
@ the vectors in X have different directions, and
o G(Z?,PX) embeds in the prime distance graph on R?.



Given a finite set X of integer vectors, the Cayley graph G(Z2, X)
has edges between v and v + x for each x € X.

X =777

PX =2XU3XUBXU7TXU...

We define a particular X so that
@ the vectors in X have different directions, and
o G(Z?,PX) embeds in the prime distance graph on R?.



Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k, we can choose X so that every edgeless set of vertices
in G(Z2?,PX) has upper density < 1/k.




Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k, we can choose X so that every edgeless set of vertices
in G(Z2?,PX) has upper density < 1/k.

It follows that G(Z2,PX) has chromatic number > k.



Theorem (Davies, McCarty, and Pilipczuk 2024+)

For any k, we can choose X so that every edgeless set of vertices
in G(Z?,PX) has upper density < 1/k.

It follows that G(Z2,PX) has chromatic number > k.

Additional property of X: For each u € R?, few x € X have u - x
being “close to” a non-zero rational with small denominator.



Theorem (Davies, McCarty, and Pilipczuk 2024+)
For any k, we can choose X so that every edgeless set of vertices
in G(Z?,PX) has upper density < 1/k.

Few x € X have
llu-x— 2| <e
for coprime a, b
with |b| small.

It follows that G(Z2,PX) has chromatic number > k.

Additional property of X: For each u € R?, few x € X have u - x
being “close to” a non-zero rational with small denominator.



Theorem (Davies, McCarty, and Pilipczuk 2024+)
For any k, we can choose X so that every edgeless set of vertices
in G(Z?,PX) has upper density < 1/k.

Few x € X have
llu-x— 2| <e
for coprime a, b
with |b| small.

Theorem (Davies 2024; inspired by the Lovéasz theta bound)
It suffices to find a weight function w : PX — R>q so that
w(PX) =1 and —inf,cpe >, cpx W(x) cos(27(u - x)) < e.
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For any k, we can choose X so that every edgeless set of vertices
in G(Z?,PX) has upper density < 1/k.

Few x € X have

The prime number
llu-x— 2| <e

theorem says that

log p
dopsn - — 1

as N — oo.

for coprime a, b
with |b| small.

Theorem (Davies 2024; inspired by the Lovéasz theta bound)
It suffices to find a weight function w : PX — R>q so that
w(PX) =1 and —inf,cpe >, cpx W(x) cos(27(u - x)) < e.
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Question (Davies, McCarty, and Pilipczuk 2024+)

Is there any infinite set D C Z so that the plane can be colored
with finitely many colors so as to avoid distances in D?

Question (Davies, Krawczyk, McCarty, and Walczak 2021)

Is there a polynomial p so that curve visibility graphs with
clique number w have chromatic number < p(w)?



Thank you!
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