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Consider the unit circle C = {(x , y) ∈ R2 : x2 + y2 = 1}. A chord
is a line segment between two points on C. Fix a finite collection
R of chords. Can we partition R into ¬ t non-crossing parts?

One obstruction is t + 1 pairwise intersecting chords in R.

Theorem (Davies and McCarty 2021)
If R does not contain t + 1 pairwise intersecting chords, then it
can be partitioned into at most 7t2 non-intersecting parts.
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Consider a Jordan curve J and a finite set of points P ⊂ J . Two
points in P are visible if the line segment between them is inside
of J . When can we partition P into ¬ t invisible parts?

One obstruction is t + 1 pairwise visible points in P.

Theorem (Davies, Krawczyk, McCarty, and Walczak 2021)
If P does not contain t + 1 pairwise visible points, then it can be
partitioned into at most 4t invisible parts.



Babia Góra, border of Slovakia and Poland, 2019
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A general formulation
The chromatic number χ(G) is the minimum number of colors
needed to assign adjacent vertices in V different colors.

The clique number ω(G) is the maximum size of a set of pairwise
adjacent vertices in V.

ω ¬ χ¬ f (ω)
A class of graphs is χ-bounded if such a function exists, and f is
called a χ-bounding function.

Theorem (Erdös 1959)
The class of all graphs is not χ-bounded.

Vizing’s Theorem, the Strong Perfect Graph Theorem,
Gyárfás–Sumner Conjecture, . . .
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i.e. if χ ¬ ωωω
ωω
ω

then χ ¬ ωd too!

Figure from The
New Turing Omnibus,
Dewdney
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How quickly can an optimal
χ-bounding function grow?

Esperet’s Conjecture
There is always a polynomial χ-bounding function.

i.e. if χ ¬ ωωω
ωω
ω

then χ ¬ ωd too!

Theorem (Briański, Davies, and Walczak 2023)
Actually, optimal χ-bounding functions can grow arbitrarily
quickly.

We only consider classes that are
closed under vertex-deletion.
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Theorem (Davies, McCarty, and Pilipczuk 2024+)
The class of all prime distance graphs is not χ-bounded.

Let P ⊆ R2. Put an edge between x , y ∈ P if ||x − y || is prime.
There is no 4-vertex clique (Graham, Rothschild, and Straus 1974).
Our Theorem: For all k, there exists such a graph with χ ­ k.
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Theorem (Davies, McCarty, and Pilipczuk 2024+)
In any coloring of the plane with finitely many colors, there exist
x , y ∈ R2 of the same color such that ||x − y || is prime.

Figure by Andy BantlyTheorem (Fürstenberg, Katznelson, Weiss 1990)
This is true if each color class is measurable. In fact, the
“densest” color contains all sufficiently large distances in R.

https://www.codeproject.com/Articles/353651/Visualizing-Fractals
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A measurable set I ⊆ R2 has positive upper density if

lim sup
|S|→∞

m(S ∩ I)
m(S) > 0.

Figure by Smith, Myers, Kaplan, and Goodman-Strauss

Fact: In any measurable coloring of R2 with finitely many colors,
there exists a color of positive upper density.

https://cs.uwaterloo.ca/~csk/hat/
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To define “density” in the non-measurable setting, let I ⊆ Z2.
The set I has positive upper density if

lim sup
|S|→∞

|S ∩ I|
|S| > 0.

vector
[
4
3

] √
42 + 32 = 5

Put an edge between pairs whose distance is prime. This graph
actually has chromatic number 2 :(. So we define a different
graph on Z2 which embeds in the prime distance graph on R2.
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For any k, we can choose X so that every edgeless set of vertices
in G(Z2,PX ) has upper density < 1/k.

Few x ∈ X have
||u · x − a

b || < ϵ
for coprime a, b
with |b| small.

The prime number
theorem says that∑

p¬N
log p

N → 1
as N →∞.

Theorem (Davies 2024; inspired by the Lovász theta bound)
It suffices to find a weight function w : PX → R­0 so that
w(PX ) = 1 and − infu∈R2

∑
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Question (Davies, McCarty, and Pilipczuk 2024+)
Is there any infinite set D ⊆ Z so that the plane can be colored
with finitely many colors so as to avoid distances in D?

Question (Davies, Krawczyk, McCarty, and Walczak 2021)
Is there a polynomial p so that curve visibility graphs with
clique number ω have chromatic number ¬ p(ω)?



Thank you!



Puerto Rico, 2023


