Preparing Graph States

Rose McCarty

Schools of Math and CS
Georgia
Tech.

L

- -
D
/@i

:

October 11, 2025, ACORN

with Jim Geelen, Donggyu Kim, Caleb McFarland,
and Paul Wollan



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

Quantum error correction below the surface code
threshold

Google Quantum Al and Collaborators




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

|H) G)
A 1-qubit quantum state is [3] € C? with norm 1.



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

|H) G)
A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

Bit Qubit
0 |0
o -
O

1 Arti Singh |1>

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

Bit Qubit
0 |0
o) :
O

1 Arti Singh |1>

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

®© 0 0 06

© 06 0 0

© 0 0 06
G)

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

ary

BREN

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

01) = [0) @ [1) = H ® m _

o O~ O

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

So |000),|001),|010),|011),...,|111)
form a basis for C? ® C? @ C?
called the computational basis.

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

So |000),|001),|010),|011),...,|111)
form a basis for C? ® C? @ C?
called the computational basis.

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",
A quantum gate is a matrix with UUT = UTU = |.




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

® 0 O 6
+)®...Q|+)
®© O O 0O =
SR
@ @ o @ @ se{0,1}"

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",
A quantum gate is a matrix with UUT = UTU = |.




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

@ch\@ ® ®

[+)®...®|+)
®© O O 0O =

LS )y
@ @ o @ @ se{0,1}"

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].

Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C?> ® ... ® C? = (C?)®",
A quantum gate is a matrix with UUT = UTU = |.

The controlled-Z gate negates |s) if s, = s, = 1.




Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

1G)
A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].

Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C2®...® C? = (C?)®".
A quantum gate is a matrix with UUT = UTU = |.

The controlled-Z gate negates |s) if s, = s, = 1.



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

11 )Y
uveE .
1 E(supps
e S (—1)IEGuerl | s)
se{0,1}n

1G)
A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].

Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C2®...® C? = (C?)®".
A quantum gate is a matrix with UUT = UTU = |.

The controlled-Z gate negates |s) if s, = s, = 1.



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

I1 )Y
uveE .
1 E(supps
e ST (—1)IEGuerl | s)
se{0,1}n

|G>
Entangled n-qubit states cannot be written as [¢1) ® ... ® |dp).



Problem

Given graphs H and G, determine if the quantum state |H) can
be easily prepared from |G).

esses

cee

8

Entangled n-qubit states cannot be written as |¢1) ® ... ® |¢pp).
Graph states are resources which enable quantum computation.
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(Raussendorf & Briegel 2001)
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We can easily prepare |H) from |G) iff H is a vertex-minor of G:
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Entangled n-qubit states cannot be written as [¢1) ® ... ® |Pn).
Graph states are resources which enable quantum computation.
We say |H) can be (easily) prepared from |G) if we can build it
from |G) using only (simple) 1-qubit gates & measurements.
To locally complement, select a vertex v and
switch adjacencies within the neighborhood of v.
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Theorem (Kwon-McCarty-Oum-Wollan 21)

If H is a half-graph, then any graph with no H-vertex-minor
“looks like a shallow tree”.

Theorem (Geelen-Kwon-McCarty-Wollan 23)

If H is a comparability grid, then any graph with no
H-vertex-minor “looks like a tree”.

Corollary (Courcelle—Oum; Fomin-Korhonen; Courcelle-Makowsky-Rotics)

For any circle graph H, we can test if H is a vertex-minor of an
n-vertex graph G in time Op(n?).
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Theorem (McCarty 24)

For any Eulerian graph G and vertex a, the maximum size of a
circuit decomposition where every circuit is odd and hits a equals

minimum,/ x (M(E(X)) + %|§(X)| —odd,/ (G — X)) .

d

Q: Can we obtain this as a corollary of the Tutte-Berge Formula?
Q (Claudet): Largest independent set vertex-minor in G(n,1/2)?



Thank you!



