

Preparing Graph States

Rose McCarty

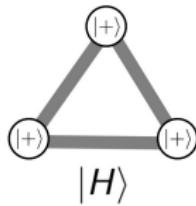
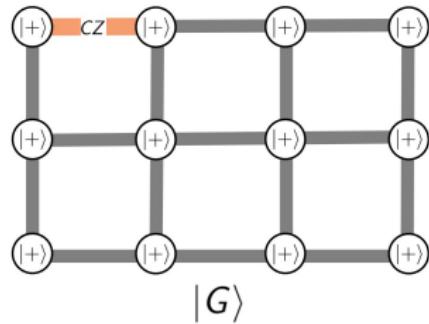
Schools of Math and CS

October 11, 2025, ACORN

with **Jim Geelen**, **Donggyu Kim**, **Caleb McFarland**,
and **Paul Wollan**

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



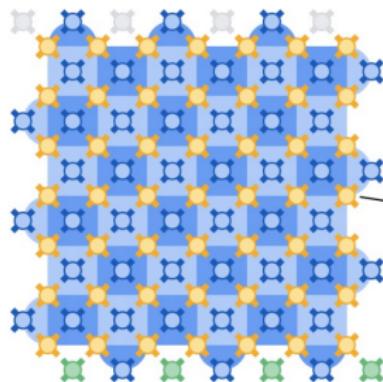
Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

Quantum error correction below the surface code threshold

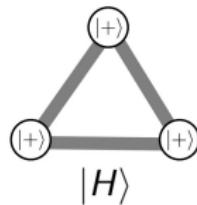
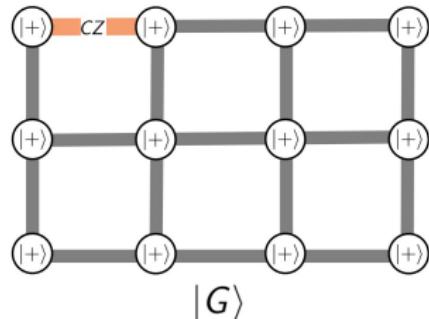
[Google Quantum AI and Collaborators](#)

[Nature](#) **638**, 920–926 (2025) | [Cite this article](#)



Problem

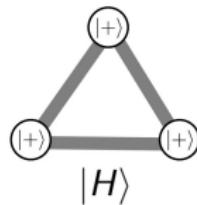
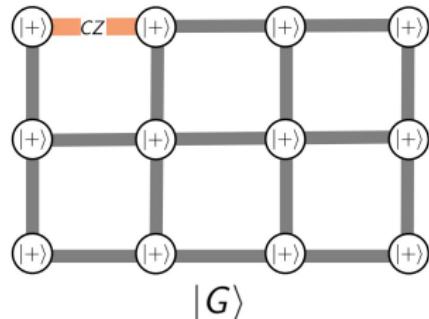
Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

Problem

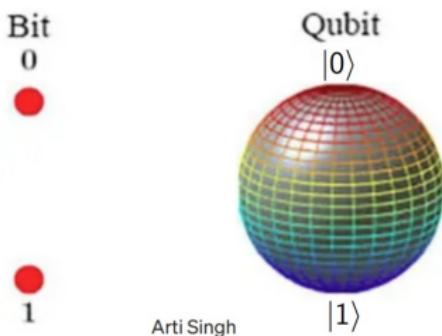
Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.
For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Problem

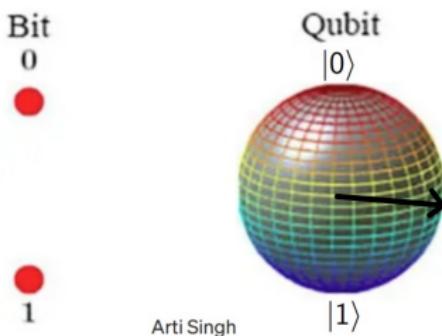
Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.
For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



Arti Singh

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ |G\rangle & & & \end{array}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \otimes \begin{bmatrix} \gamma \\ \delta \end{bmatrix} = \begin{bmatrix} \alpha\gamma \\ \alpha\delta \\ \beta\gamma \\ \beta\delta \end{bmatrix}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

$$|01\rangle = |0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

So $|000\rangle, |001\rangle, |010\rangle, |011\rangle, \dots, |111\rangle$
form a basis for $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$
called the **computational basis**.

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

So $|000\rangle, |001\rangle, |010\rangle, |011\rangle, \dots, |111\rangle$
form a basis for $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$
called the **computational basis**.

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ |G\rangle & & & \end{array} \begin{array}{l} |+\rangle \otimes \dots \otimes |+\rangle \\ = \\ \frac{1}{\sqrt{2^n}} \sum_{s \in \{0,1\}^n} |s\rangle \end{array}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

$$\begin{array}{c} \text{(+)} \text{---} \text{CZ} \text{---} \text{(+)} \\ \text{u} \qquad \text{v} \\ \text{(+)} \qquad \text{(+)} \qquad \text{(+)} \qquad \text{(+)} \\ \text{(+)} \qquad \text{(+)} \qquad \text{(+)} \qquad \text{(+)} \\ |G\rangle \end{array} \quad \begin{array}{c} \text{(+)} \qquad \text{(+)} \\ \text{(+)} \qquad \text{(+)} \\ \text{(+)} \qquad \text{(+)} \\ \text{(+)} \end{array} \quad \begin{array}{c} \text{CZ}_{uv} |+\rangle \otimes \dots \otimes |+ \rangle \\ = \\ \text{CZ}_{uv} \frac{1}{\sqrt{2^n}} \sum_{s \in \{0,1\}^n} |s\rangle \end{array}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

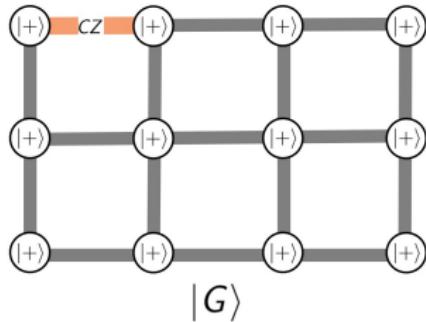
An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

The **controlled-Z** gate CZ_{uv} negates $|s\rangle$ if $s_u = s_v = 1$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



$$\prod_{uv \in E} CZ_{uv} |+\rangle^{\otimes V}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

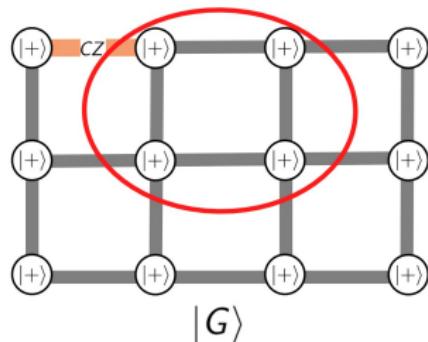
An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

The **controlled-Z** gate CZ_{uv} negates $|s\rangle$ if $s_u = s_v = 1$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



$$\prod_{uv \in E} CZ_{uv} |+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{s \in \{0,1\}^n} (-1)^{|E(supps)|} |s\rangle$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

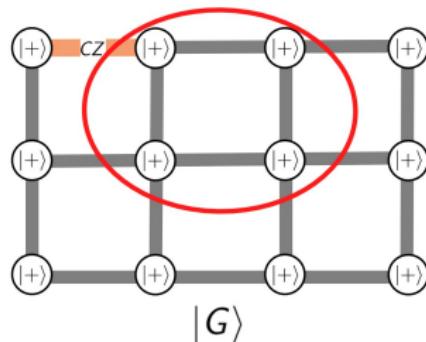
An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

The **controlled-Z** gate CZ_{uv} negates $|s\rangle$ if $s_u = s_v = 1$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

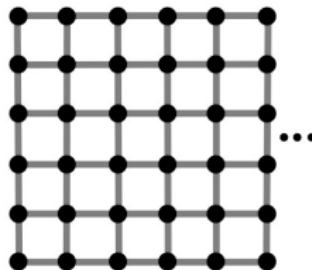


$$\frac{1}{\sqrt{2}^n} \sum_{s \in \{0,1\}^n} (-1)^{|E(\text{supp}_s)|} |s\rangle = \prod_{uv \in E} \text{CZ}_{uv} |+\rangle^{\otimes V}$$

Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

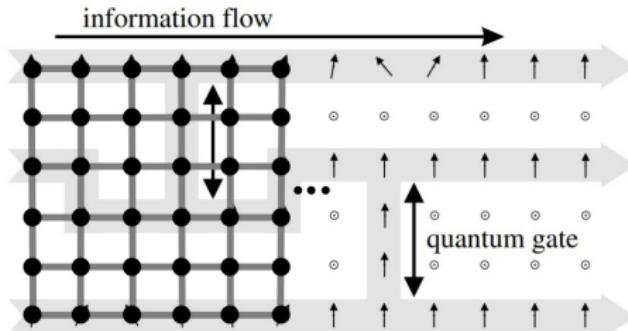


Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.

“A One-Way Quantum Computer”
(Raussendorf & Briegel 2001)

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

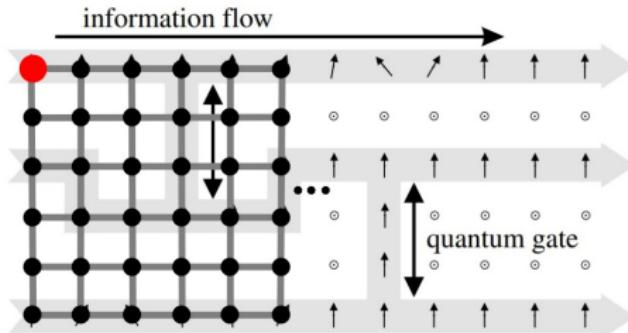


Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.

“A One-Way Quantum Computer”
(Raussendorf & Briegel 2001)

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

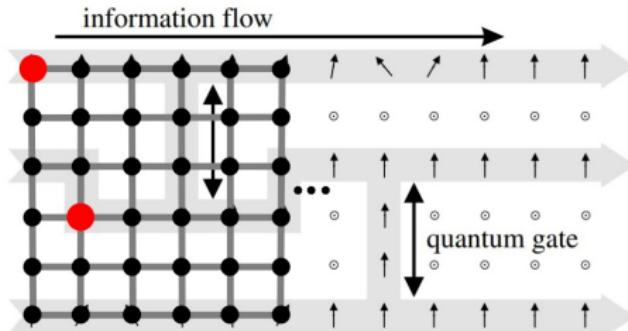


Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.

“A One-Way Quantum Computer”
(Raussendorf & Briegel 2001)

Problem

Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.

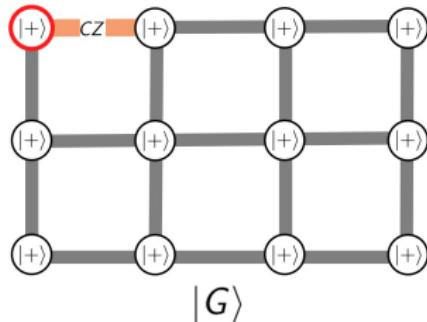


Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.

“A One-Way Quantum Computer”
(Raussendorf & Briegel 2001)

Problem

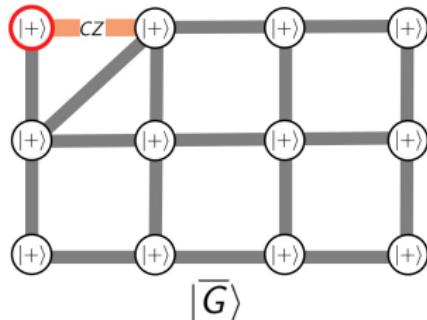
Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.
We say $|H\rangle$ can be **(easily) prepared** from $|G\rangle$ if we can build it from $|G\rangle$ using only (simple) 1-qubit gates & measurements.

Problem

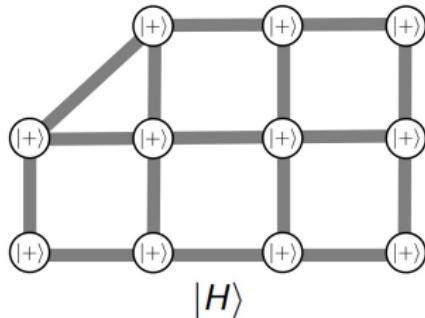
Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.
We say $|H\rangle$ can be **(easily) prepared** from $|G\rangle$ if we can build it from $|G\rangle$ using only (simple) 1-qubit gates & measurements.

Problem

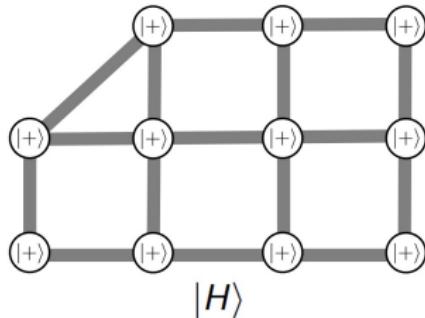
Given graphs H and G , determine if the **quantum state** $|H\rangle$ can be **easily prepared** from $|G\rangle$.



Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.
Graph states are **resources** which enable quantum computation.
We say $|H\rangle$ can be **(easily) prepared** from $|G\rangle$ if we can build it from $|G\rangle$ using only (simple) 1-qubit gates & measurements.

Theorem (Van den Nest-Dehaene-De Moor 04; Dahlberg-Helsen-Wehner 20)

We can **easily prepare** $|H\rangle$ from $|G\rangle$ iff H is a **vertex-minor** of G : we can obtain H by deleting vertices and **locally complementing**.



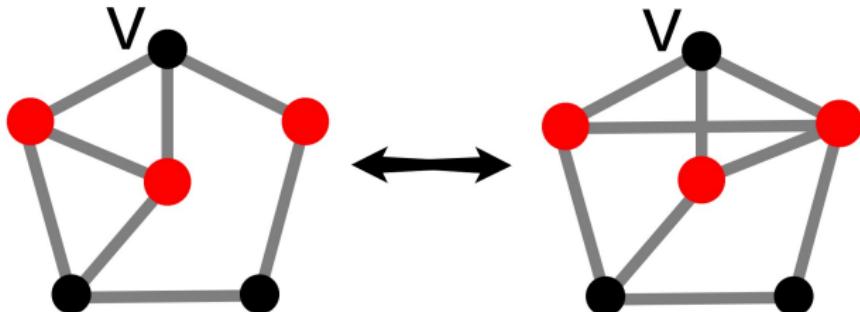
Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.

Graph states are **resources** which enable quantum computation.

We say $|H\rangle$ can be **(easily) prepared** from $|G\rangle$ if we can build it from $|G\rangle$ using only (simple) 1-qubit gates & measurements.

Theorem (Van den Nest-Dehaene-De Moor 04; Dahlberg-Helsen-Wehner 20)

We can **easily prepare** $|H\rangle$ from $|G\rangle$ iff H is a **vertex-minor** of G : we can obtain H by deleting vertices and **locally complementing**.



Entangled n -qubit states *cannot* be written as $|\phi_1\rangle \otimes \dots \otimes |\phi_n\rangle$.

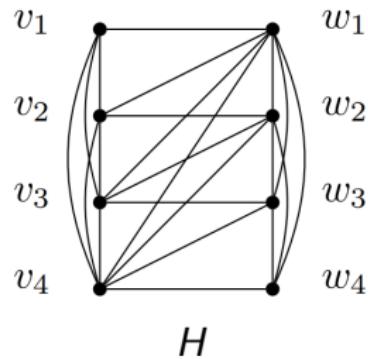
Graph states are **resources** which enable quantum computation.

We say $|H\rangle$ can be **(easily) prepared** from $|G\rangle$ if we can build it from $|G\rangle$ using only (simple) 1-qubit gates & measurements.

To **locally complement**, select a vertex v and switch adjacencies within the **neighborhood** of v .

Theorem (Kwon-McCarty-Oum-Wollan 21)

If H is a **half-graph**, then any graph with no H -vertex-minor “looks like a shallow tree”.

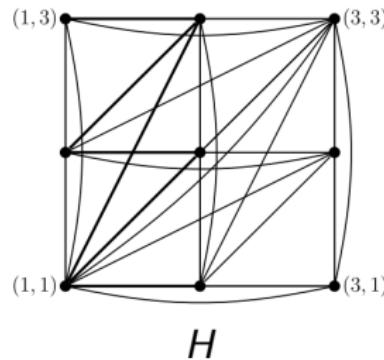


Theorem (Kwon-McCarty-Oum-Wollan 21)

*If H is a **half-graph**, then any graph with no H -vertex-minor “looks like a shallow tree”.*

Theorem (Geelen-Kwon-McCarty-Wollan 23)

*If H is a **comparability grid**, then any graph with no H -vertex-minor “looks like a tree”.*



Theorem (Kwon-McCarty-Oum-Wollan 21)

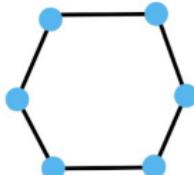
If H is a **half-graph**, then any graph with no H -vertex-minor “looks like a shallow tree”.

Theorem (Geelen-Kwon-McCarty-Wollan 23)

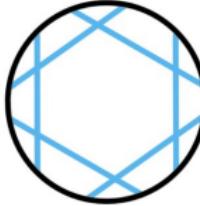
If H is a **comparability grid**, then any graph with no H -vertex-minor “looks like a tree”.

Corollary (Courcelle-Oum; Fomin-Korhonen; Courcelle-Makowsky-Rötcs)

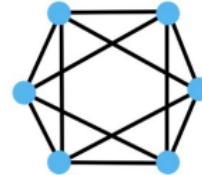
For any **circle graph** H , we can test if H is a **vertex-minor** of an n -vertex graph G in time $\mathcal{O}_H(n^2)$.



circle graph



chord diagram

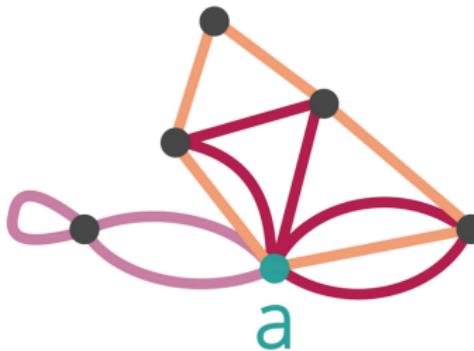


tour graph

Theorem (McCarty 24)

For any Eulerian graph G and vertex a , the **maximum** size of a circuit decomposition where every circuit is odd and hits a equals

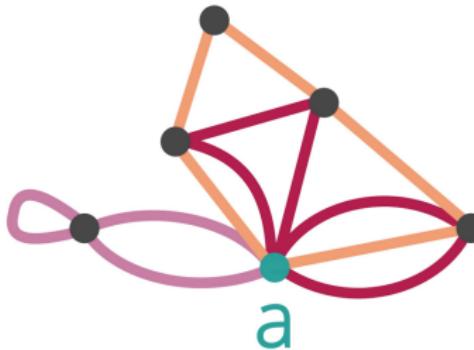
$$\mathbf{minimum}_{\gamma',X} \left(\gamma'(E(X)) + \frac{1}{2}|\delta(X)| - \text{odd}_{\gamma'}(G - X) \right).$$



Theorem (McCarty 24)

For any Eulerian graph G and vertex a , the **maximum** size of a circuit decomposition where every circuit is odd and hits a equals

$$\mathbf{minimum}_{\gamma',X} \left(\gamma'(E(X)) + \frac{1}{2}|\delta(X)| - \text{odd}_{\gamma'}(G - X) \right).$$

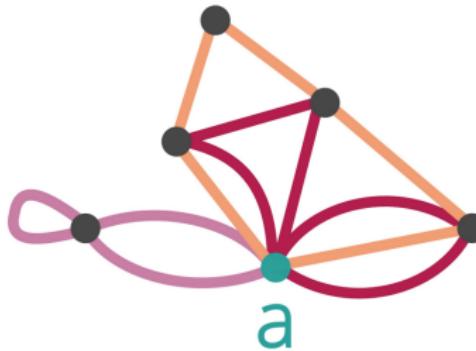


Q: Can we obtain this as a corollary of the Tutte-Berge Formula?

Theorem (McCarty 24)

For any Eulerian graph G and vertex a , the **maximum** size of a circuit decomposition where every circuit is odd and hits a equals

$$\mathbf{minimum}_{\gamma',X} \left(\gamma'(E(X)) + \frac{1}{2}|\delta(X)| - \text{odd}_{\gamma'}(G - X) \right).$$



Q: Can we obtain this as a corollary of the Tutte-Berge Formula?

Q (Claudet): Largest independent set **vertex-minor** in $G(n, 1/2)$?

Thank you!