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To locally complement, select a vertex v and
switch adjacencies within the neighborhood of v .
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Corollary (Courcelle-Oum; Fomin-Korhonen; Courcelle-Makowsky-Rotics)

For any circle graph H, we can test if H is a vertex-minor of an
n-vertex graph G in time OH(n

2).



Theorem (McCarty 24)

For any Eulerian graph G and vertex a, the maximum size of a
circuit decomposition where every circuit is odd and hits a equals

minimumγ′,X

(
γ′(E (X )) +

1

2
|δ(X )| − oddγ′(G − X )

)
.



Theorem (McCarty 24)

For any Eulerian graph G and vertex a, the maximum size of a
circuit decomposition where every circuit is odd and hits a equals

minimumγ′,X

(
γ′(E (X )) +

1

2
|δ(X )| − oddγ′(G − X )

)
.

Q: Can we obtain this as a corollary of the Tutte-Berge Formula?



Theorem (McCarty 24)

For any Eulerian graph G and vertex a, the maximum size of a
circuit decomposition where every circuit is odd and hits a equals

minimumγ′,X

(
γ′(E (X )) +

1

2
|δ(X )| − oddγ′(G − X )

)
.

Q: Can we obtain this as a corollary of the Tutte-Berge Formula?
Q (Claudet): Largest independent set vertex-minor in G (n, 1/2)?



Thank you!


