

Vertex-minors and quantum computing

Rose McCarty

Schools of Math and CS

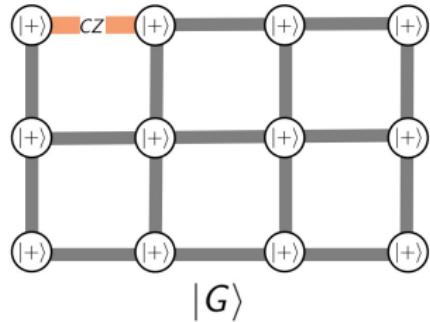
October 27, 2025, Bertinoro Workshop on Algorithms and Graphs
With **Jim Geelen** and **Paul Wollan**.

Quantum Graph States: Bridging Classical Theory and Quantum Innovation—Workshop Summary

Eric Chitambar¹, Kenneth Goodenough², Otfried Gühne³, Rose McCarty⁴, Simon Perdrix⁵,
Vito Scarola^{*,6}, Shuo Sun⁷, and Quntao Zhang^{8,9}

$$|G'\rangle = \left(-e^{i\frac{\pi}{2} \frac{X_1 - Z_1}{\sqrt{2}}} \otimes Z_2 \otimes Z_3 \otimes e^{i\frac{\pi}{2} \frac{X_4 - Z_4}{\sqrt{2}}} \right) |G\rangle.$$

What is the **quantum state** $|G\rangle$ associated with a graph G ?

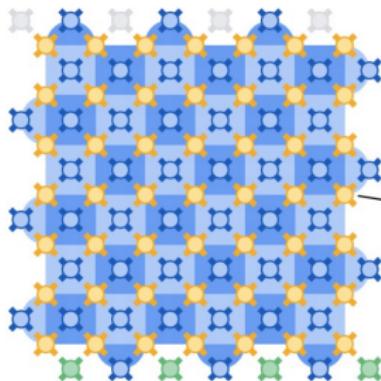


What is the **quantum state** $|G\rangle$ associated with a graph G ?

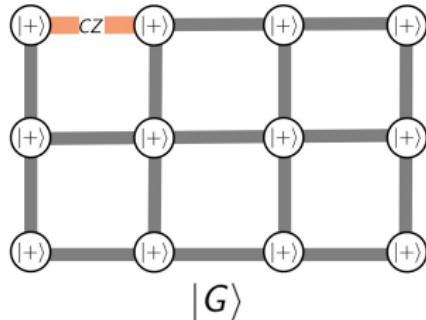
Quantum error correction below the surface code threshold

[Google Quantum AI and Collaborators](#)

[Nature](#) **638**, 920–926 (2025) | [Cite this article](#)

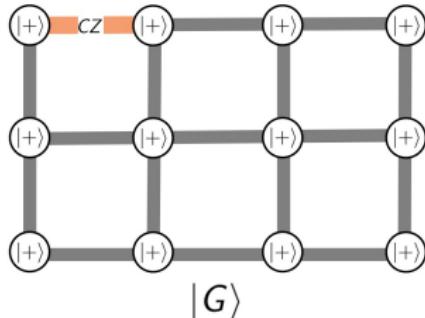


What is the **quantum state** $|G\rangle$ associated with a graph G ?



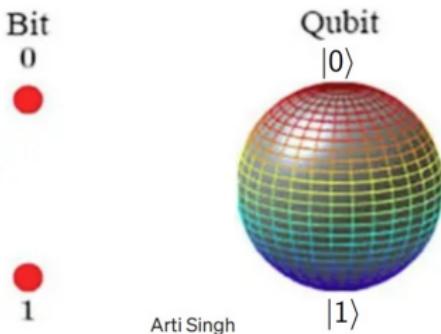
A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

What is the **quantum state** $|G\rangle$ associated with a graph G ?



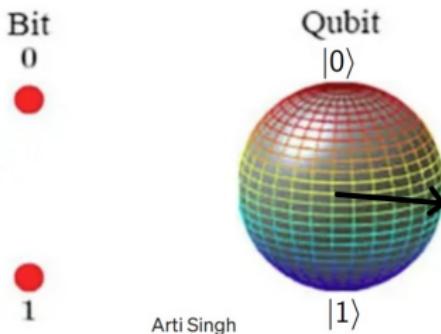
A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.
For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?



A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.
For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

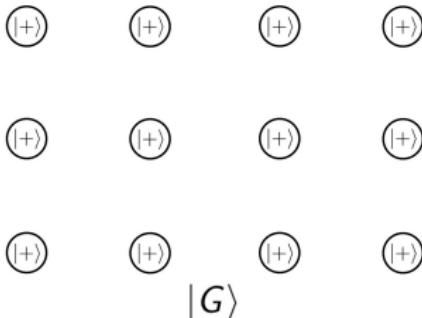


A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?



A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \otimes \begin{bmatrix} \gamma \\ \delta \end{bmatrix} = \begin{bmatrix} \alpha\gamma \\ \alpha\delta \\ \beta\gamma \\ \beta\delta \end{bmatrix}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

$$|01\rangle = |0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

So $|000\rangle, |001\rangle, |010\rangle, |011\rangle, \dots, |111\rangle$ form a basis for $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ called the **computational basis**.

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ |+\rangle & |+\rangle & |+\rangle & |+\rangle \end{array} \quad |+\rangle \otimes \dots \otimes |+\rangle$$
$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ |+\rangle & |+\rangle & |+\rangle & |+\rangle \end{array} \quad =$$
$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \\ |+\rangle & |+\rangle & |+\rangle & |+\rangle \end{array} \quad \frac{1}{\sqrt{2^n}} \sum_{s \in \{0,1\}^n} |s\rangle$$
$$|G\rangle$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \end{array} \quad |+\rangle^{\otimes V}$$
$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \end{array} \quad =$$
$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \end{array} \quad \frac{1}{\sqrt{2}^n} \sum_{s \in \{0,1\}^V} |s\rangle$$
$$|G\rangle$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \end{array} \quad |+\rangle^{\otimes V}$$
$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \end{array} \quad =$$
$$\begin{array}{cccc} \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} & \textcircled{(+)} \end{array} \quad \frac{1}{\sqrt{2}^n} \sum_{s \in \{0,1\}^V} |s\rangle$$
$$|G\rangle$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?

A **1-qubit quantum state** is $[\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix}] \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

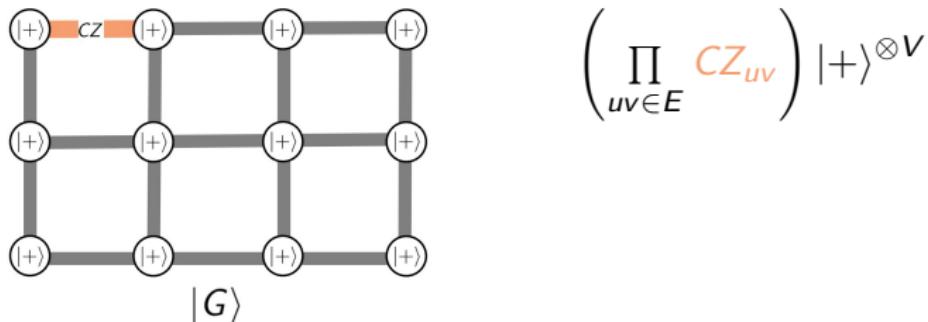
Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$.

An ***n*-qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

The **controlled-Z** gate $CZ_{\mu\nu}$ negates $|s\rangle$ if $s_\mu = s_\nu = 1$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?



A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

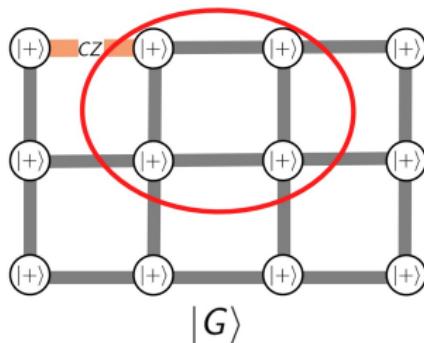
Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

The **controlled-Z** gate CZ_{uv} negates $|s\rangle$ if $s_u = s_v = 1$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?



$$\left(\prod_{uv \in E} CZ_{uv} \right) |+\rangle^{\otimes V} = \frac{1}{\sqrt{2^n}} \sum_{s \in \{0,1\}^V} (-1)^{|E(supp_s)|} |s\rangle$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

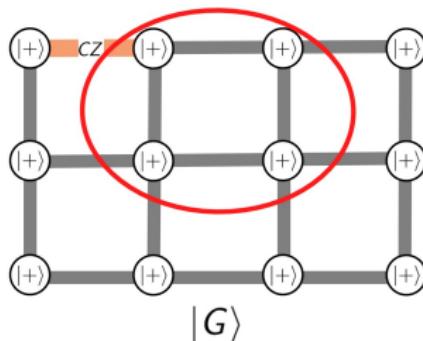
Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

The **controlled-Z** gate CZ_{uv} negates $|s\rangle$ if $s_u = s_v = 1$.

What is the **quantum state** $|G\rangle$ associated with a graph G ?



$$\left(\prod_{uv \in E} CZ_{uv} \right) |+\rangle^{\otimes V} = \frac{1}{\sqrt{2^n}} \sum_{s \in \{0,1\}^V} (-1)^{|E(supp_s)|} |s\rangle$$

A **1-qubit quantum state** is $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$ with norm 1.

For example, $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Each vertex is a qubit initialized to $|+\rangle = (|0\rangle + |1\rangle) / \sqrt{2}$.

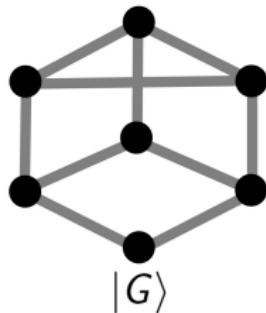
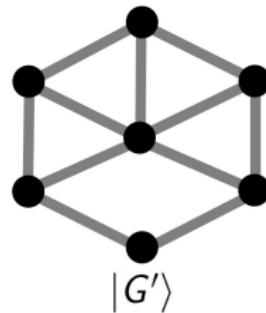
An **n -qubit quantum state** is $|\phi\rangle \in \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}$.

A **quantum gate** is a matrix with $UU^\dagger = U^\dagger U = I$.

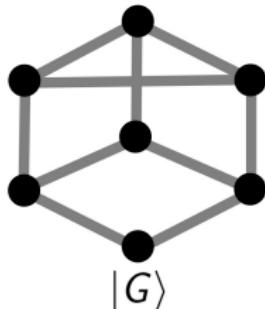
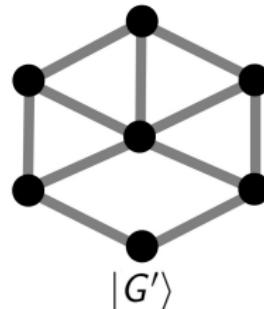
The **controlled-Z** gate CZ_{uv} negates $|s\rangle$ if $s_u = s_v = 1$.

A state is **entangled** if it *cannot* be written as $\bigotimes_{v \in V} |\phi_v\rangle$.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?

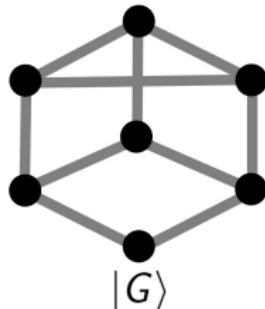
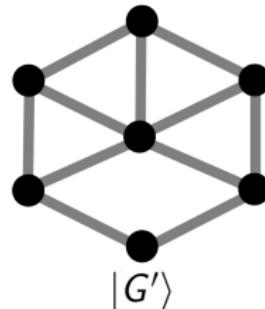


When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



Two states on the same set of qubits are **local unitary equivalent** if they only differ up to 1-qubit gates.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



Two states on the same set of qubits are **local unitary equivalent** if they only differ up to 1-qubit gates.

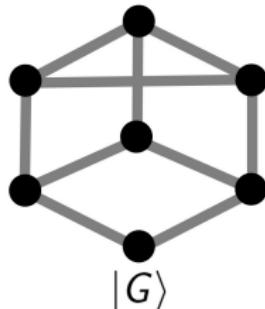
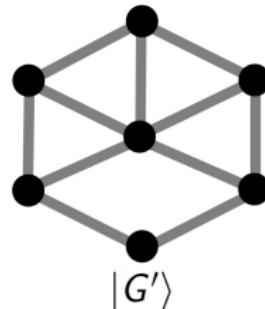
Example: We can switch 0s and 1s on the first qubit:

$$|000\rangle + |001\rangle + |111\rangle$$

$$\simeq_{LU}$$

$$|100\rangle + |101\rangle + |011\rangle$$

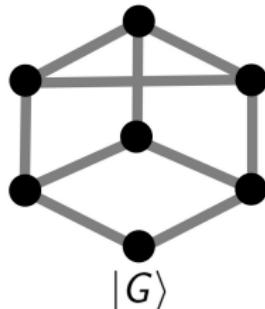
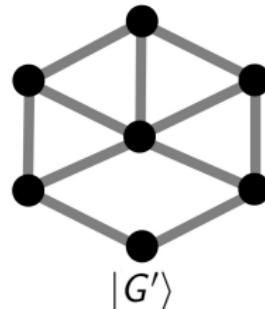
When are two graph states $|G\rangle$ and $|G'\rangle$ **equivalent**?



Two states on the same set of qubits are **local unitary equivalent** if they only differ up to 1-qubit gates.

Example: We can switch 0s and 1s on the first qubit; apply the gate $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ to the first qubit.

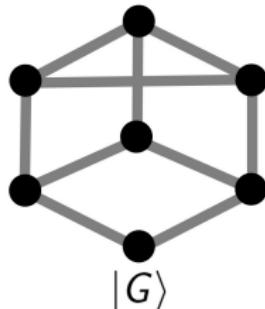
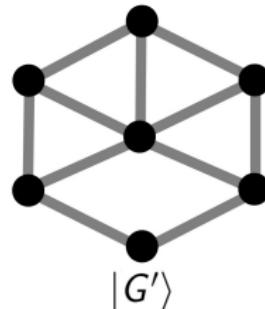
When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



Two states on the same set of qubits are **local unitary equivalent** if they only differ up to 1-qubit gates.

Equivalent states have the same “level of entanglement” since $U_1 (|\phi_1\rangle \otimes |\phi_2\rangle \otimes \dots \otimes |\phi_n\rangle) = (U_1 |\phi_1\rangle) \otimes |\phi_2\rangle \otimes \dots \otimes |\phi_n\rangle$.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



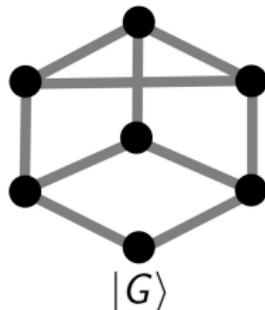
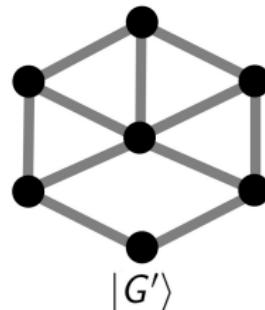
Two states on the same set of qubits are **local unitary equivalent** if they only differ up to 1-qubit gates.

Equivalent states have the same “level of entanglement” since $U_1 (|\phi_1\rangle \otimes |\phi_2\rangle \otimes \dots \otimes |\phi_n\rangle) = (U_1 |\phi_1\rangle) \otimes |\phi_2\rangle \otimes \dots \otimes |\phi_n\rangle$.

Theorem (Schlingemann 2002)

Every **stabilizer** state is LU -equivalent to a graph state.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?

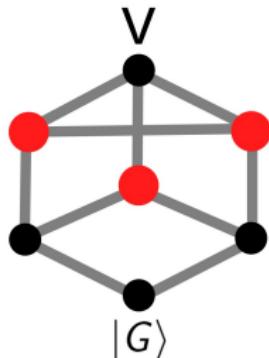
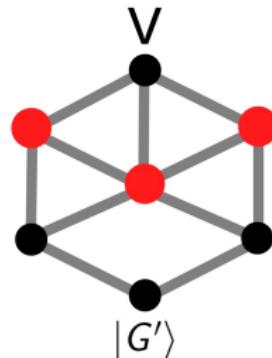


Two states on the same set of qubits are **local Clifford equivalent** if they only differ up to 1-qubit gates generated by H and S .

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



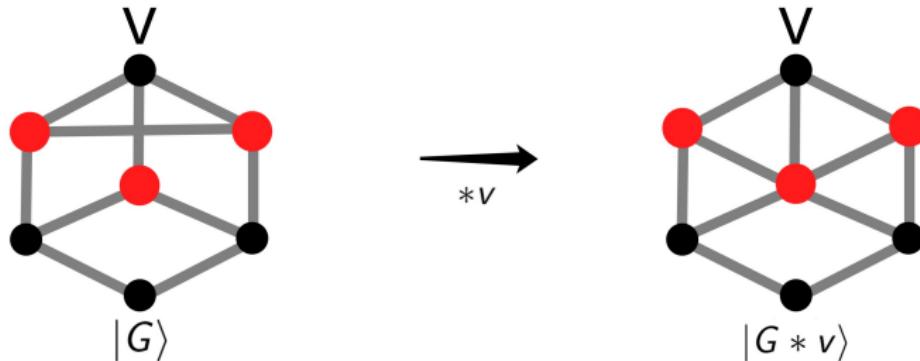
Two states on the same set of qubits are **local Clifford equivalent** if they only differ up to 1-qubit gates generated by H and S .

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Given $v \in V$, perform HSH at v and S^\dagger at each **neighbor** of v .

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



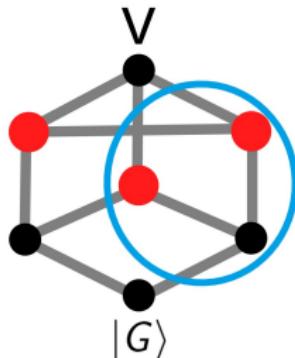
Two states on the same set of qubits are **local Clifford equivalent** if they only differ up to 1-qubit gates generated by H and S .

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

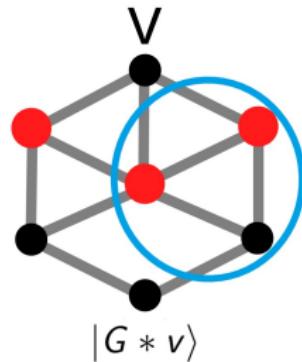
$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Given $v \in V$, perform HSH at v and S^\dagger at each **neighbor** of v . The resulting graph $G * v$ is obtained from G by **locally complementing** at v : switching adjacencies within $N(v)$.

When are two graph states $|G\rangle$ and $|G'\rangle$ **equivalent**?



$(-1)^{|E(supps)|} |s\rangle$
changes sign
iff
 $|N(v) \cap supps| \equiv 2, 3 \pmod{4}$



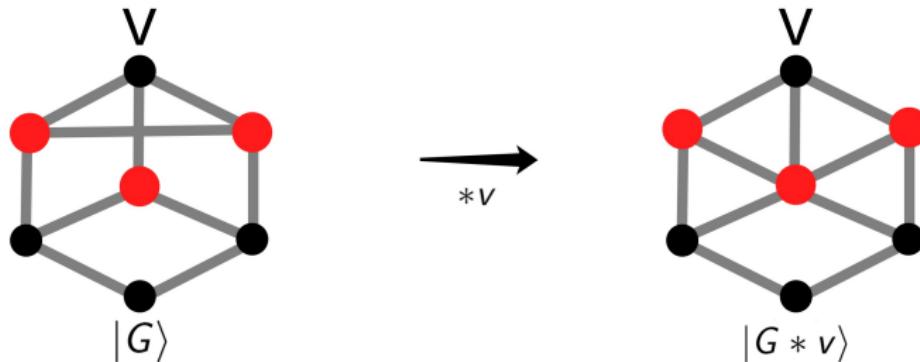
Two states on the same set of qubits are **local Clifford equivalent** if they only differ up to 1-qubit gates generated by H and S .

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Given $v \in V$, perform HSH at v and S^\dagger at each **neighbor** of v .
The resulting graph $G * v$ is obtained from G by **locally complementing** at v : switching adjacencies within $N(v)$.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



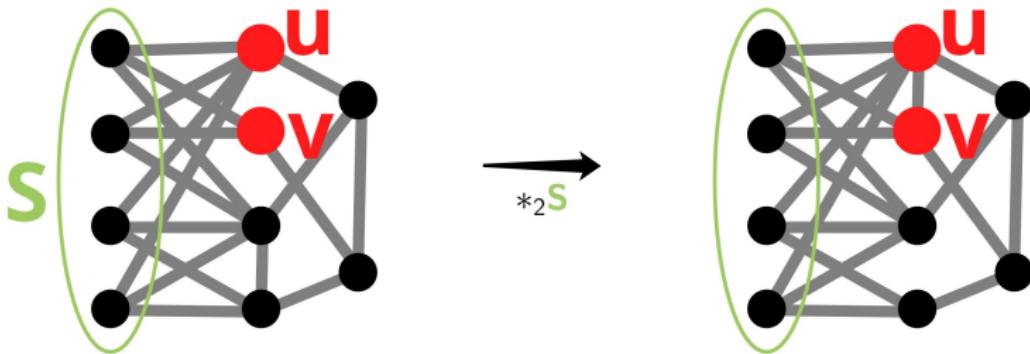
Theorem (Van den Nest, Dehaene, De Moor 2004)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local Clifford equivalent** iff there is a sequence of vertices so that $|G'\rangle = |G * v_1 * \dots * v_k\rangle$.

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?

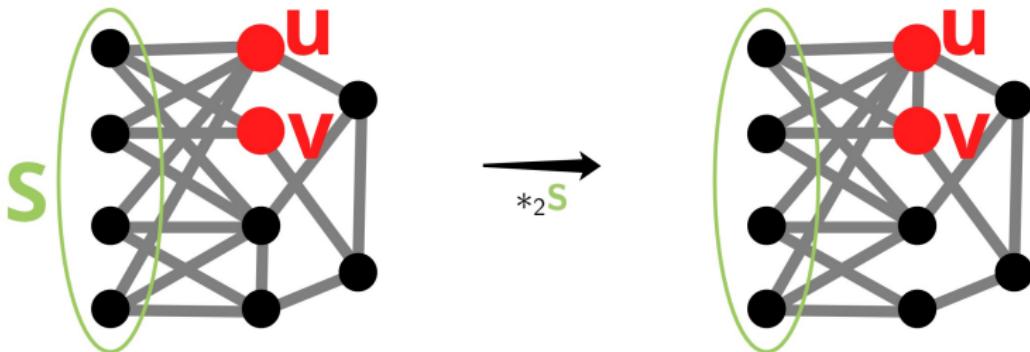


Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \quad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \quad \dots$$

When are two graph states $|G\rangle$ and $|G'\rangle$ **equivalent**?

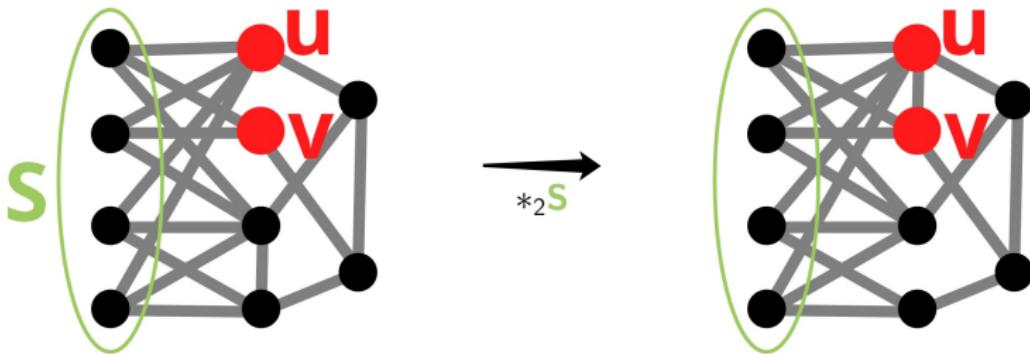


Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r-local complementation**, for $r \in \mathbb{Z}^+$.

If S is an independent set and $G * S = G$, i.e., every pair u, v have $|N(u) \cap N(v) \cap S| \equiv 0 \pmod{2}$, then we may instead switch adjencies between u and v if $|N(u) \cap N(v) \cap S| \equiv 2 \pmod{4}$.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



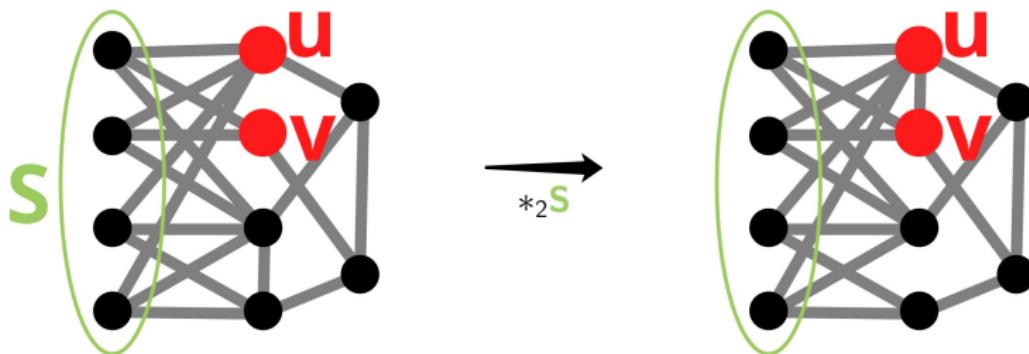
Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

Meta Conjecture (originally Schlingemann; see Krueger & Werner 05)

In general, r -local complementation is “not much more powerful” than local complementation.

When are two graph states $|G\rangle$ and $|G'\rangle$ **equivalent**?



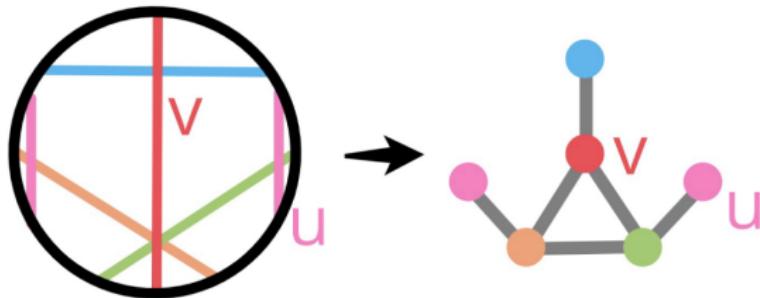
Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

Theorem (Ji, Chen, Wei, and Ying 2010)

There exists a pair of graph states which are *LU*-equivalent but **not** *LC*-equivalent.

When are two graph states $|G\rangle$ and $|G'\rangle$ **equivalent**?



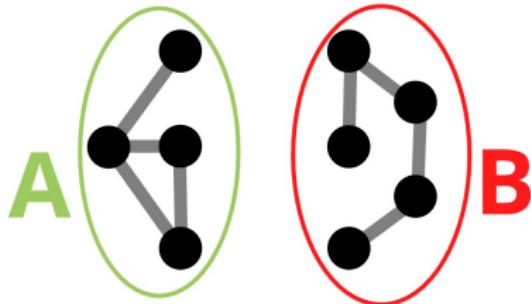
Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

Theorem (Claudet, Geelen, Hahn, McCarty, Poulsen 2025+)

For **circle graphs**, LU -equivalence \leftrightarrow LC -equivalence.

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



$$|G\rangle = |\phi^A\rangle \otimes |\phi^B\rangle$$

$$\text{cut-rank}(A, B) = 0$$

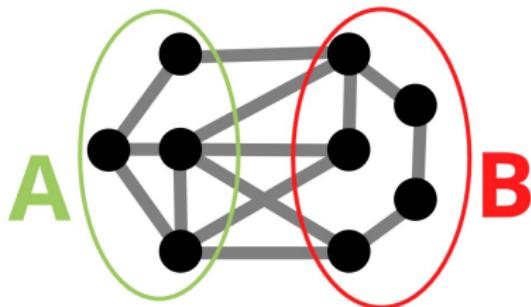
Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

Lemma (Hein, Eisert, and Briegel 2004)

*LU-equivalent graphs have the same **cut-rank** function.*

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



While minimizing r , write:

$$|G\rangle = \sum_{i=1}^r \xi_i |\phi_i^A\rangle \otimes |\phi_i^B\rangle.$$

$$\text{cut-rank}(A, B) = \log_2(r)$$

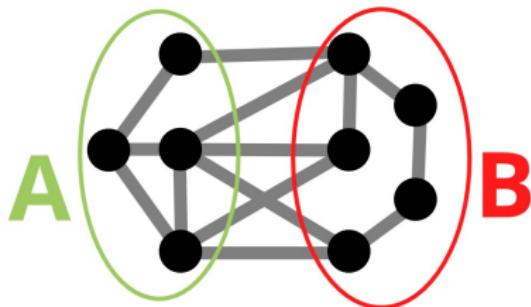
Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

Lemma (Hein, Eisert, and Briegel 2004)

*LU-equivalent graphs have the same **cut-rank** function.*

When are two graph states
 $|G\rangle$ and $|G'\rangle$ **equivalent**?



While minimizing r , write:

$$|G\rangle = \sum_{i=1}^r \xi_i |\phi_i^A\rangle \otimes |\phi_i^B\rangle.$$

$$\begin{aligned}\text{cut-rank}(A, B) &= \log_2(r) \\ &= \text{rank}_{GF(2)}(\text{Adj}[A, B])\end{aligned}$$

Theorem (Claudet and Perdrix 2025)

Two graph states $|G\rangle$ and $|G'\rangle$ are **local unitary equivalent** iff G' can be obtained from G by **r -local complementation**, for $r \in \mathbb{Z}^+$.

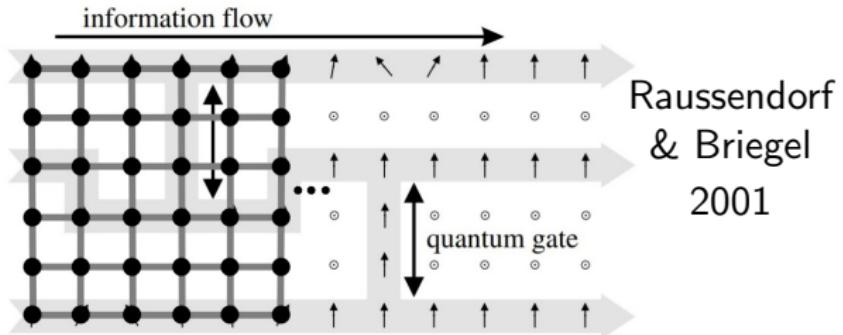
Lemma (Hein, Eisert, and Briegel 2004)

*LU-equivalent graphs have the same **cut-rank** function.*

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

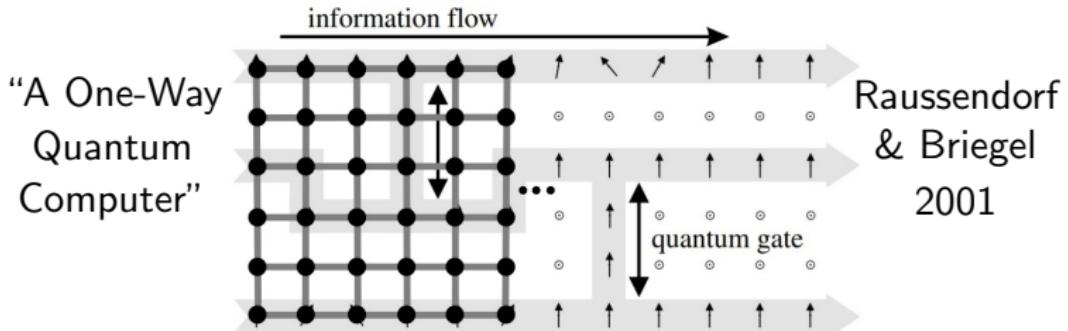
*Which graph classes can serve as **universal resources** for quantum computation?*

“A One-Way Quantum Computer”



Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

*Which graph classes can serve as **universal resources** for quantum computation?*

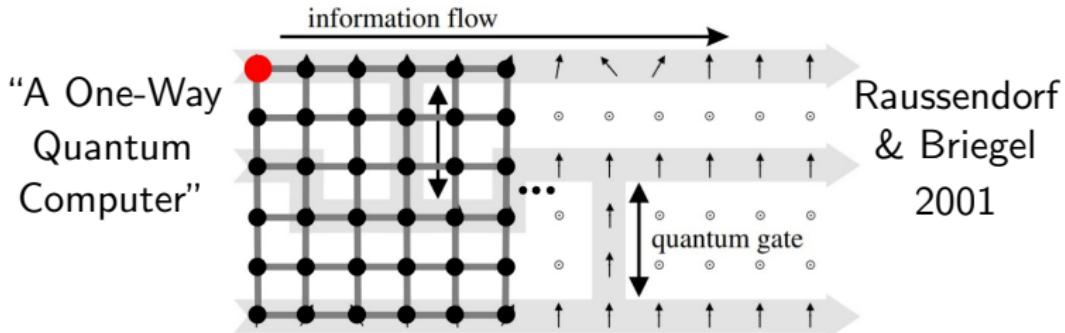


In **measurement-based quantum computation**, we:

- First prepare a graph state $|G\rangle$.

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as **universal resources** for quantum computation?

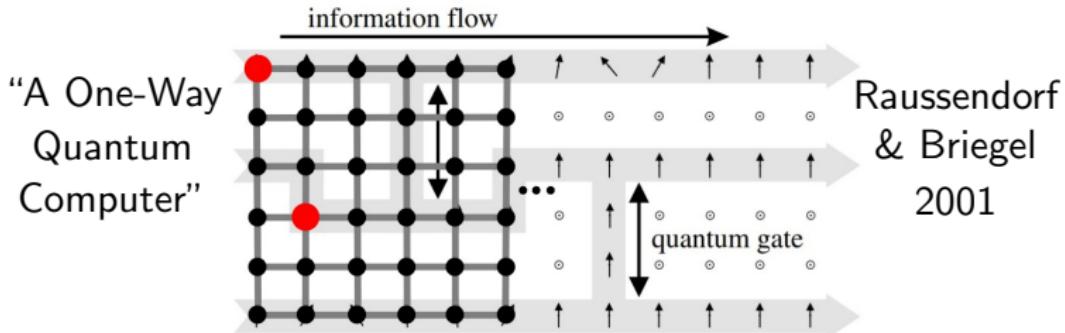


In **measurement-based quantum computation**, we:

- First prepare a graph state $|G\rangle$.
- Measure a qubit: measuring $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ in the computational basis returns 0 with probability $|\alpha|^2$ and 1 with probability $|\beta|^2$.

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as **universal resources** for quantum computation?

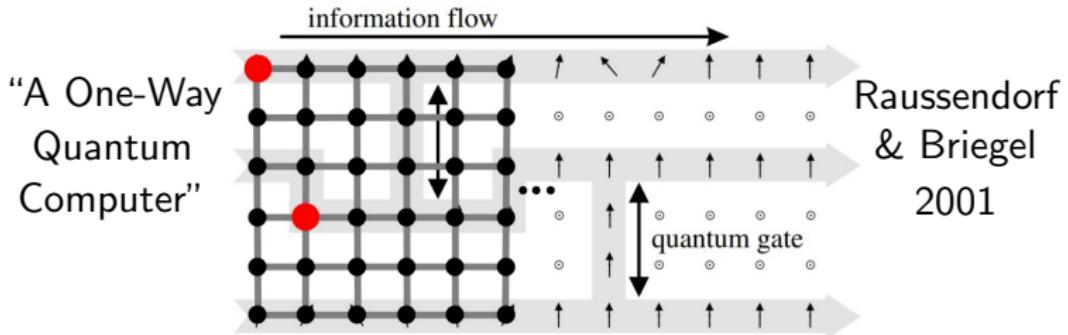


In **measurement-based quantum computation**, we:

- First prepare a graph state $|G\rangle$.
- Measure a qubit: measuring $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ in the computational basis returns 0 with probability $|\alpha|^2$ and 1 with probability $|\beta|^2$.
- Choose the next measurement based on prior outcomes.

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as **universal resources** for quantum computation?

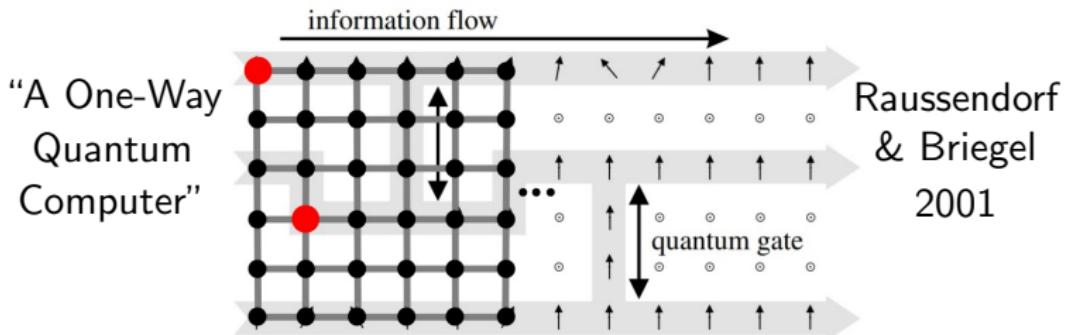


Theorem (Raussendorf and Briegel 2001)

When every **grid** (“2D cluster state”) can be prepared, this is equivalent to the quantum gate model (up to polynomial factors).

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

*Which graph classes can serve as **universal resources** for quantum computation?*

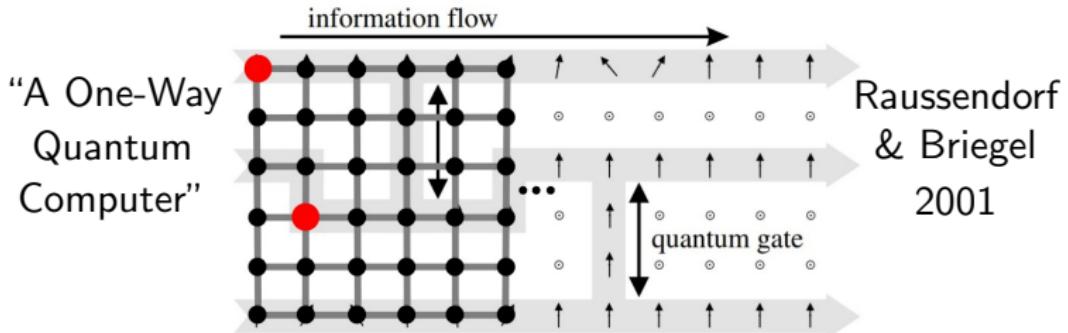


Question

*Are there graphs which can **more efficiently** model every n -qubit quantum gate than **grids**?*

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

*Which graph classes can serve as **universal resources** for quantum computation?*

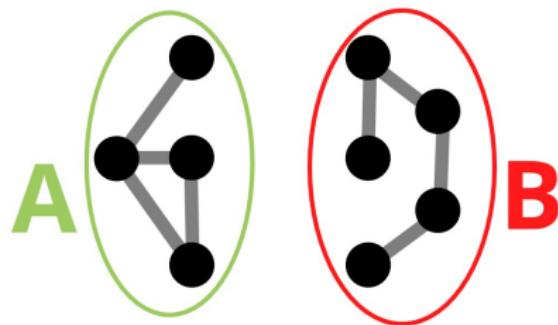


Question (see Rossi, Huber, Bruß, & Macciavello 13)

*Are there architectures which are easier to build experimentally?
Perhaps **hypergraph states**?*

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as **universal resources** for quantum computation?



Theorem (Van den Nest, Dür, Vidal, & Briegel 2007)

Classes of graphs with logarithmic **rank-width** (i.e. “low entanglement”) only yield classical computers.

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as **universal resources** for quantum computation?

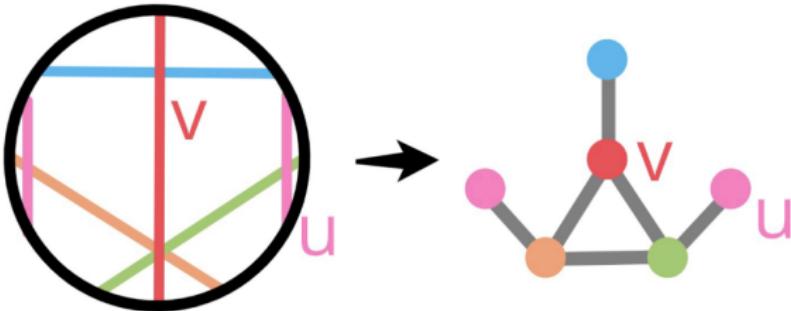


Theorem (Bravyi & Raussendorf 07 + Bravyi, Gosset, & Liu 22)

However, high entanglement is not sufficient; there are also “topological/geometric” obstructions.

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

*Which graph classes can serve as **universal resources** for quantum computation?*

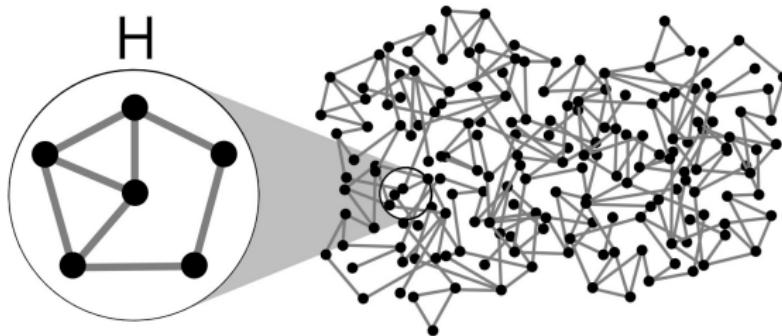


Theorem (Harrison, Iyer, Parekh, Thompson, Zhao 25+)

*The class of all **circle graphs** also yields a classical computer.*

Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

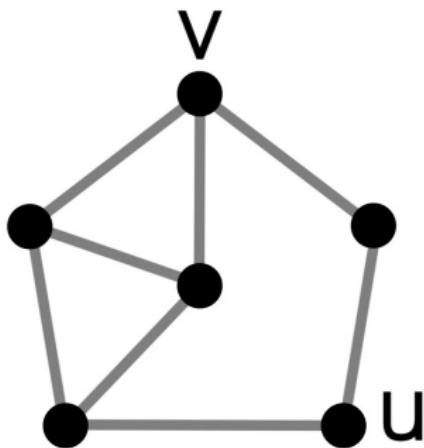
*Which graph classes can serve as **universal resources** for quantum computation?*



Conjecture (Geelen)

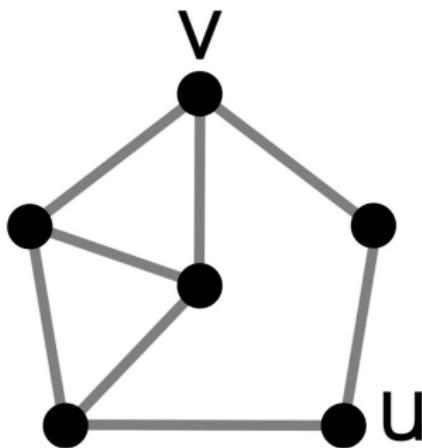
*Every class that does **not** yield a classical computer **contains all graphs** up to local complementation and vertex deletion.*

The **vertex-minors** of a graph G are the graphs that can be obtained from G by:



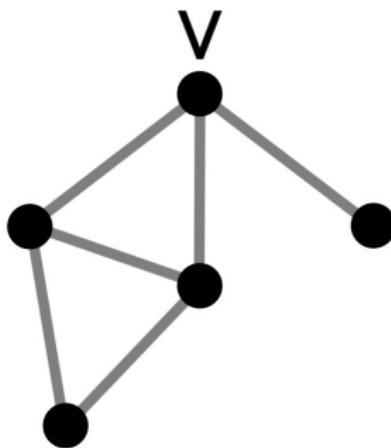
The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices



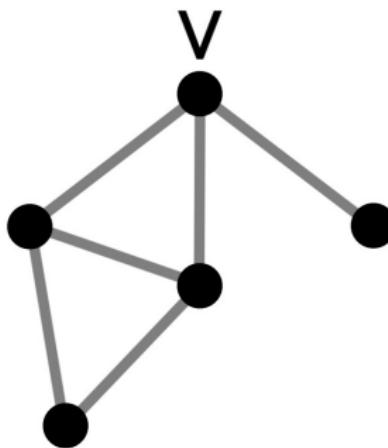
The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices



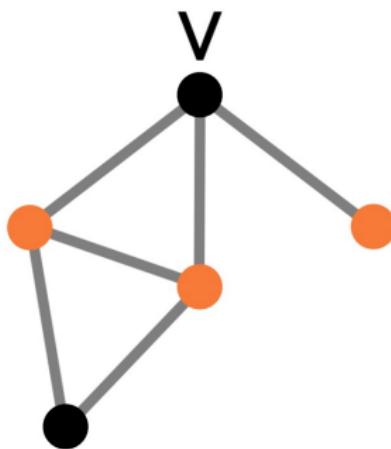
The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices



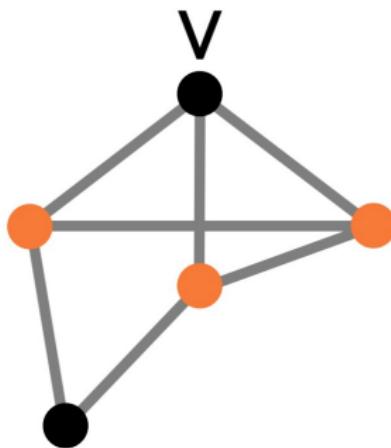
The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).



The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

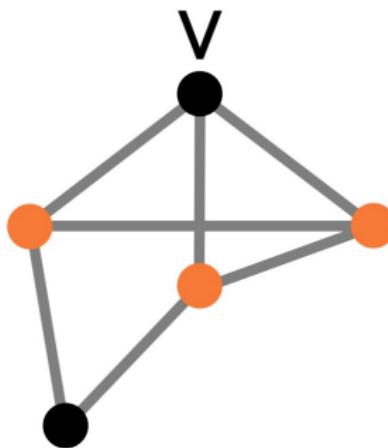
- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).



The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

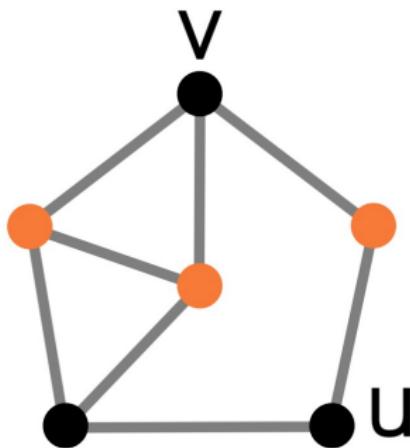
We may do all local complementations first.



The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

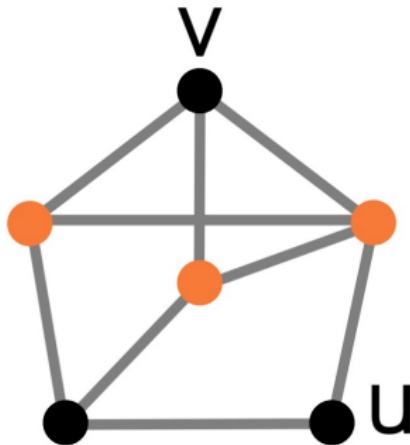
We may do all local complementations first.



The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

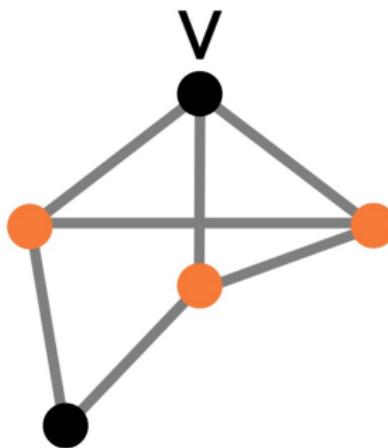
We may do all local complementations first.



The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

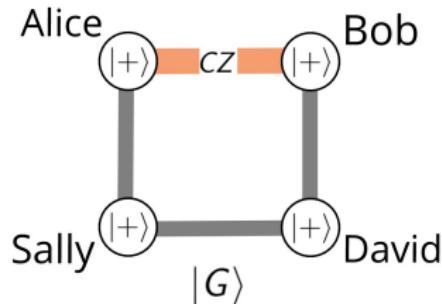
We may do all local complementations first.



The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

We may do all local complementations first.



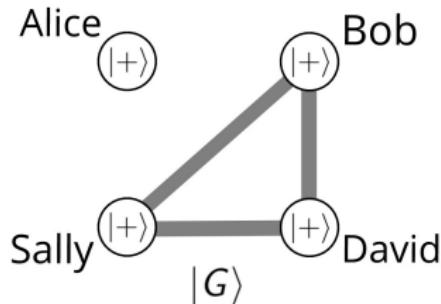
Proposition (Dahlberg-Helsen-Wehner 20)

A graph H without isolated vertices is a **vertex-minor** of G iff $|H\rangle$ can be prepared from $|G\rangle$ using $LC + LPM + CC$.

The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

We may do all local complementations first.



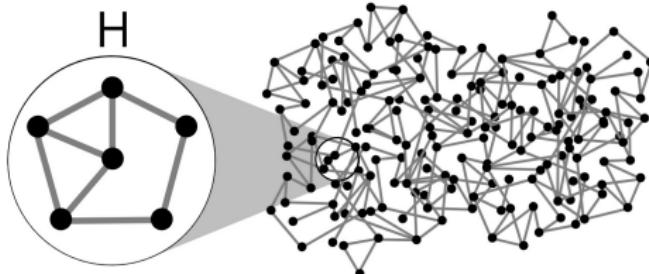
Proposition (Dahlberg-Helsen-Wehner 20)

A graph H without isolated vertices is a **vertex-minor** of G iff $|H\rangle$ can be prepared from $|G\rangle$ using $LC + LPM + CC$.

The **vertex-minors** of a graph G are the graphs that can be obtained from G by:

- deleting vertices and
- **locally complementing** at vertices (replaces the induced subgraph on the **neighborhood** of v by its complement).

We may do all local complementations first.



Theorem (Cautrès, Claudet, Mhalla, Perdrix, Savin, & Thomassé 2024)

*There are graphs with $\mathcal{O}(n^2)$ -many vertices which **contain** every **n -vertex** graph as a vertex-minor. This is best possible.*

Structure Theorem (Robertson & Seymour 2003)

*The graphs in any proper **minor-closed** class “decompose” into parts that “almost embed” in a surface of bounded genus.*

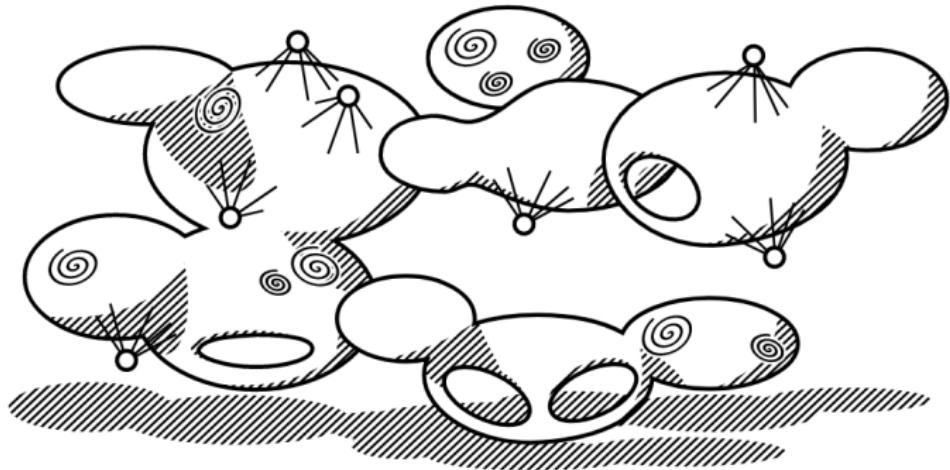
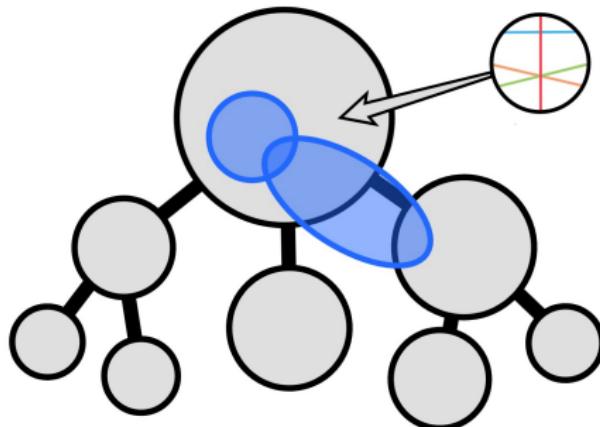


Figure by Felix Reidl

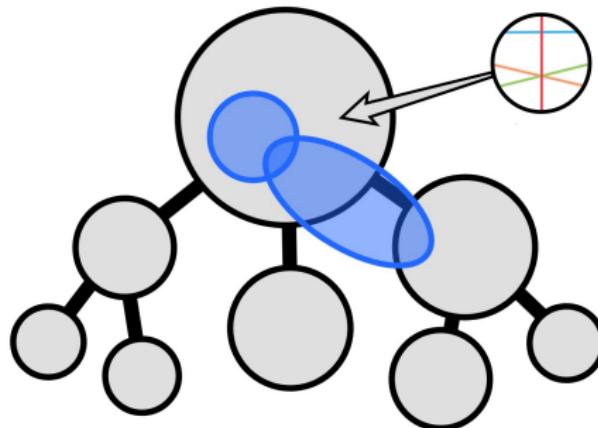
Conjecture (Geelen)

*The graphs in any proper **vertex-minor**-closed class “decompose” into parts that are “almost” **circle graphs**.*



Conjecture (Geelen)

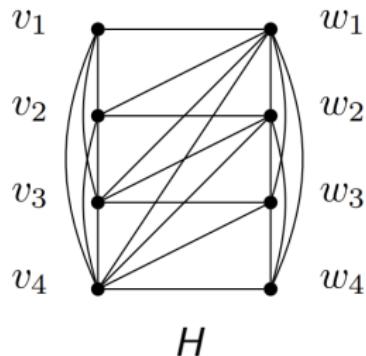
*The graphs in any proper **vertex-minor**-closed class “decompose” into parts that are “almost” **circle graphs**.*



Ongoing project with Jim Geelen & Paul Wollan
aiming to prove the conjecture.

Theorem (Kwon, McCarty, Oum, Wollan 2021)

A graph class “looks like shallow trees” (w.r.t. **cut-rank**) iff it does not contain all **half-graphs** as vertex-minors.

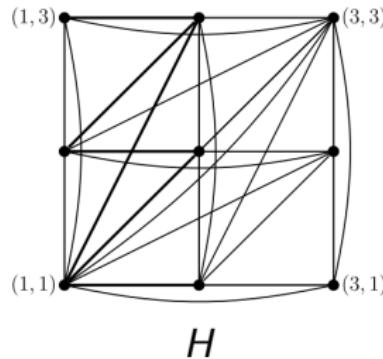


Theorem (Kwon, McCarty, Oum, Wollan 2021)

A graph class “looks like shallow trees” (w.r.t. **cut-rank**) iff it does not contain all **half-graphs** as vertex-minors.

Theorem (Geelen, Kwon, McCarty, Wollan 2023)

A graph class “looks like trees” (w.r.t. **cut-rank**) iff it does not contain all **comparability grids** as vertex-minors.

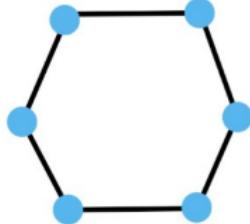


Theorem (Kwon, McCarty, Oum, Wollan 2021)

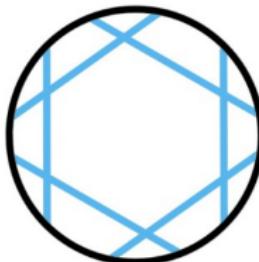
A graph class “looks like shallow trees” (w.r.t. **cut-rank**) iff it does not contain all **half-graphs** as vertex-minors.

Theorem (Geelen, Kwon, McCarty, Wollan 2023)

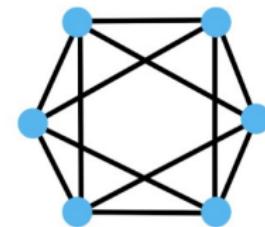
A graph class “looks like trees” (w.r.t. **cut-rank**) iff it does not contain all **comparability grids** as vertex-minors.



circle graph



chord diagram

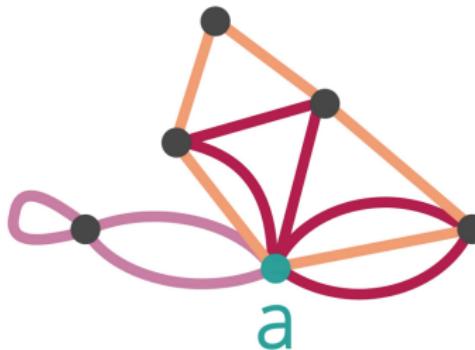


tour graph

Theorem (McCarty 24)

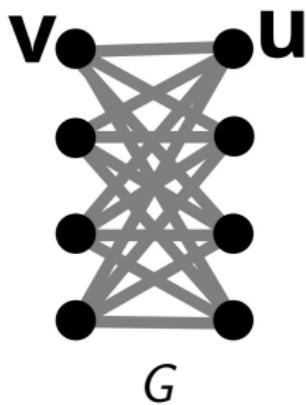
For any Eulerian graph G and vertex a , the **maximum** size of a circuit decomposition where every circuit is odd and hits a equals

$$\text{minimum}_{\gamma',X} \left(\gamma'(E(X)) + \frac{1}{2}|\delta(X)| - \text{odd}_{\gamma'}(G - X) \right).$$



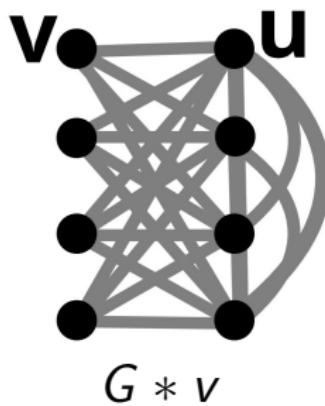
- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?

Apply $\prod_{xy \in E} CZ_{xy}$



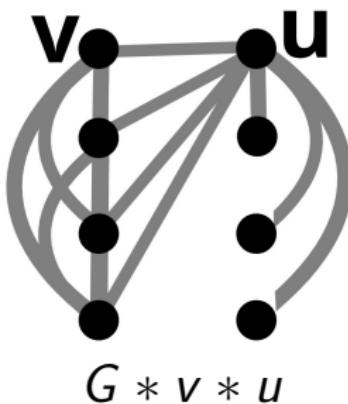
- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?

Apply $\prod_{xy \in E} CZ_{xy}$



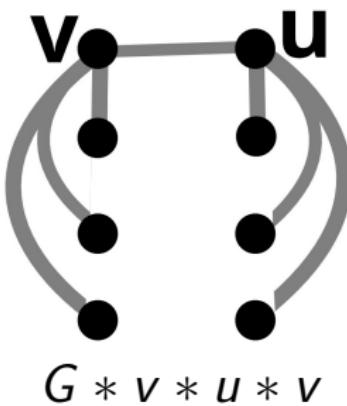
- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?

Apply $\prod_{xy \in E} CZ_{xy}$

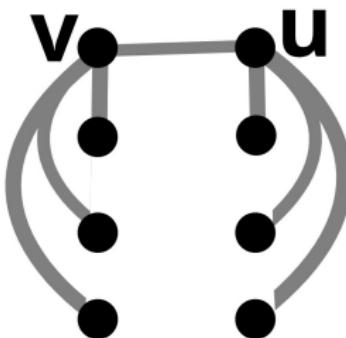


- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?

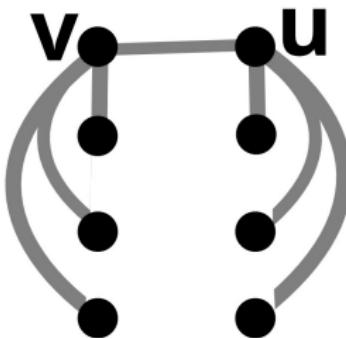
Apply $\prod_{xy \in E} CZ_{xy}$



- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpedek, Helsen, 2025).

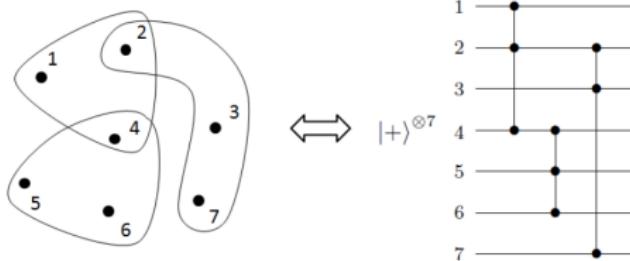


- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).

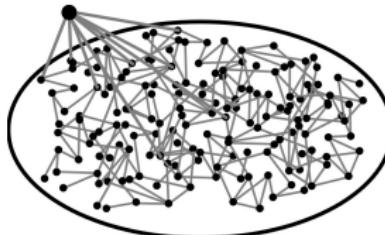


- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).
 - When can we locally complement to **remove big bicliques**? Related to (Blanco 2023) and (Brianski, Koutecky, Kral, Pekarkova, Schroder 2024). This implies sparsity or an H -vertex-minor by (Campbell, Davies, Hickinbotham 2025).

- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).
 - When can we locally complement to **remove big bicliques**? Related to (Blanco 2023) and (Brianski, Koutecky, Kral, Pekarkova, Schroder 2024). This implies sparsity or an H -vertex-minor by (Campbell, Davies, Hickinbotham 2025).
- **Q:** **Hypergraph** states? (Rossi, Huber, Bruß, Macciavello 13)



- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).
 - When can we locally complement to **remove big bicliques**? Related to (Blanco 2023) and (Brianski, Koutecky, Kral, Pekarkova, Schroder 2024). This implies sparsity or an H -vertex-minor by (Campbell, Davies, Hickinbotham 2025).
- **Q:** **Hypergraph** states? (Rossi, Huber, Bruß, Macciavello 13)
- **Q:** If an adversary secretly entangled a few qubits with $|G\rangle$, how badly can they affect $|G\rangle$?



- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).
 - When can we locally complement to **remove big bicliques**? Related to (Blanco 2023) and (Briancski, Koutecky, Kral, Pekarkova, Schroder 2024). This implies sparsity or an H -vertex-minor by (Campbell, Davies, Hickinbotham 2025).
- **Q:** **Hypergraph** states? (Rossi, Huber, Bruß, Macciavello 13)
- **Q:** If an adversary secretly entangled a few qubits with $|G\rangle$, how badly can they affect $|G\rangle$?
 - Can this kill a quantum computer?

- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).
 - When can we locally complement to **remove big bicliques**? Related to (Blanco 2023) and (Briancski, Koutecky, Kral, Pekarkova, Schroder 2024). This implies sparsity or an H -vertex-minor by (Campbell, Davies, Hickinbotham 2025).
- **Q:** **Hypergraph** states? (Rossi, Huber, Bruß, Macciavello 13)
- **Q:** If an adversary secretly entangled a few qubits with $|G\rangle$, how badly can they affect $|G\rangle$?
 - Can this kill a quantum computer?
 - Algorithms to discover vulnerabilities? (See Fomin, Golovach, Strømme, Thilikos 2018. Working with Sang-Yoon Kim.)

- **Q:** How difficult is it to **prepare** a desired graph state $|G\rangle$?
 - Algorithmic aspects of finding a **locally equivalent** graph G' with as few edges as possible (Sharma, Goodenough, Borregaard, Rozpędek, Helsen, 2025).
 - Going back and forth between local complementations and edge deletions; **CZ-distance** (see Davies & Jena 2025).
 - When can we locally complement to **remove big bicliques**? Related to (Blanco 2023) and (Brianski, Koutecky, Kral, Pekarkova, Schroder 2024). This implies sparsity or an H -vertex-minor by (Campbell, Davies, Hickinbotham 2025).
- **Q:** **Hypergraph** states? (Rossi, Huber, Bruß, Macciavello 13)
- **Q:** If an adversary secretly entangled a few qubits with $|G\rangle$, how badly can they affect $|G\rangle$?
 - Can this kill a quantum computer?
 - Algorithms to discover vulnerabilities? (See Fomin, Golovach, Strømme, Thilikos 2018. Working with Sang-Yoon Kim.)
- **Q:** Ask Caleb about random graphs.

Thank you!