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A quantum gate is a matrix with UUT = UTU = |.



What is the quantum state_JG)
associated with a graph G-

+)%Y
© 0 0 0 -

MG
©) ®|G>® © selon

A 1-qubit quantum state is [3] € C? with norm 1.
For example, [0) = [§] and |1) = [9].

Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C2®...® C? = (C?)®".
A quantum gate is a matrix with UUT = UTU = |.

The controlled-Z gate negates |s) if s, = s, = 1.
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A 1-qubit quantum state is [3] € C? with norm 1.
0) = [4] and [1) = 9]

Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.
An n-qubit quantum state is |¢) € C2®...® C? = (C?)®".
A quantum gate is a matrix with UUT utu = 1.

The controlled-Z gate negates |s) if s, = s, = 1.
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A 1-qubit quantum state is [3] € C? with norm 1.

0) =[g] and [1) = [9].
Each vertex is a qubit initialized to |[+) = (|0) + [1)) /V/2.

An n-qubit quantum state is |¢) € C2®...® C? = (C?)®".
A quantum gate is a matrix with UUT utu = 1.
The controlled-Z gate negates |s) if s, = s, = 1.

A state is entangled if it cannot be written as @ [dy).
vev
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Two states on the same set of qubits are local unitary equivalent
if they only differ up to 1-qubit gates.

Example: We can switch Os and 1s on the first qubit; apply the
gate X = lcl) é] to the first qubit.
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Two states on the same set of qubits are local unitary equivalent
if they only differ up to 1-qubit gates.

Equivalent states have the same “level of entanglement” since
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Theorem (Schlingemann 2002)

Every stabilizer state is LU-equivalent to a graph state.
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Given v € V, perform HSH at v and ST at each neighbor of v.
The resulting graph G * v is obtained from G by locally
complementing at v: switching adjacencies within N(v).
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Given v € V, perform HSH at v and ST at each neighbor of v.
The resulting graph G * v is obtained from G by locally
complementing at v: switching adjacencies within N(v).
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Theorem (Van den Nest, Dehaene, De Moor 2004)

Two graph states |G) and |G’ are local Clifford equivalent iff
there is a sequence of vertices so that |G') = |G % vy % ... % v).
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Theorem (Claudet and Perdrix 2025)

Two graph states |G) and |G’) are local unitary equivalent iff G’
can be obtained from G by r-local complementation, for r € Z+.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G) and |G’) are local unitary equivalent iff G’
can be obtained from G by r-local complementation, for r € Z+.

If S is an independent set and G xS = G, i.e., every pair u, v have
IN(u)NMN(v)NS| =0 mod 2, then we may instead switch
adjencies between v and v if [N(u) N N(v) N S| =2 mod 4.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G) and |G’) are local unitary equivalent iff G’
can be obtained from G by r-local complementation, for r € Z+.

Meta Conjecture (originally Schlingemann; see Krueger & Werner 05)

In general, r-local complementation is “not much more powerful”
than local complementation.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G) and |G’) are local unitary equivalent iff G’
can be obtained from G by r-local complementation, for r € Z+.

Theorem (Ji, Chen, Wei, and Ying 2010)

There exists a pair of graph states which are LU-equivalent but
not LC-equivalent.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G) and |G’) are local unitary equivalent iff G’
can be obtained from G by r-local complementation, for r € Z+.

Theorem (Claudet, Geelen, Hahn, McCarty, Poulsen 2025+)

For circle graphs, LU-equivalence < LC-equivalence.
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In measurement-based quantum computation, we:
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e Measure a qubit: measuring [3] in the computational basis
returns O with probability |a|? and 1 with probability |3|?.
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In measurement-based quantum computation, we:

o First prepare a graph state |G).

e Measure a qubit: measuring [3] in the computational basis
returns O with probability |a|? and 1 with probability |3|?.

@ Choose the next measurement based on prior outcomes.
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Theorem (Raussendorf and Briegel 2001)

When every grid (“2D cluster state”) can be prepared, this is
equivalent to the quantum gate model (up to polynomial factors).
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Are there graphs which can more efficiently model every n-qubit
quantum gate than grids?
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Question (see Rossi, Huber, BruB, & Macciavello 13)

Are there architectures which are easier to build experimentally?
Perhaps hypergraph states?



Question (see Van den Nest, Diir, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?

Theorem (Van den Nest, Diir, Vidal, & Briegel 2007)

Classes of graphs with logarithmic rank-width (i.e. “low
entanglement”) only yield classical computers.



Question (see Van den Nest, Diir, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?
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Theorem (Bravyi & Raussendorf 07 + Bravyi, Gosset, & Liu 22)

However, high entanglement is not sufficient; there are also
“topological /geometric” obstructions.



Question (see Van den Nest, Diir, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?
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Theorem (Harrison, lyer, Parekh, Thompson, Zhao 25+)

The class of all circle graphs also yields a classical computer.



Question (see Van den Nest, Diir, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?

Conjecture (Geelen)

Every class that does not yield a classical computer contains all
graphs up to local complementation and vertex deletion.
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A graph H without isolated vertices is a vertex-minor of G iff
|H) can be prepared from |G) using LC + LPM + CC.



The vertex-minors of a graph G are the graphs that can be
obtained from G by:

o deleting vertices and

o locally complementing at vertices (replaces the induced
subgraph on the of v by its complement).

We may do all local complementations first.
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Proposition (Dahlberg-Helsen-Wehner 20)

A graph H without isolated vertices is a vertex-minor of G iff
|H) can be prepared from |G) using LC + LPM + CC.
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The vertex-minors of a graph G are the graphs that can be
obtained from G by:

o deleting vertices and

o locally complementing at vertices (replaces the induced
subgraph on the neighborhood of v by its complement).

We may do all local complementations first.

Theorem (Cautres, Claudet, Mhalla, Perdrix, Savin, & Thomassé 2024)

There are graphs with O(n?)-many vertices which contain
every n-vertex graph as a vertex-minor. This is best possible.



Structure Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose”
into parts that “almost embed” in a surface of bounded genus.

Figure by Felix Reidl


https://tcs.rwth-aachen.de/~reidl/

Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.



Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Ongoing project with Jim Geelen & Paul Wollan
aiming to prove the conjecture.



Theorem (Kwon, McCarty, Oum, Wollan 2021)

A graph class “looks like shallow trees” (w.r.t. cut-rank) iff it does
not contain all half-graphs as vertex-minors.
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Theorem (Kwon, McCarty, Oum, Wollan 2021)
A graph class “looks like shallow trees” (w.r.t. cut-rank) iff it does
not contain all half-graphs as vertex-minors.

Theorem (Geelen, Kwon, McCarty, Wollan 2023)

A graph class “looks like trees” (w.r.t. cut-rank) iff it does not
contain all comparability grids as vertex-minors.
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Theorem (Kwon, McCarty, Oum, Wollan 2021)

A graph class “looks like shallow trees” (w.r.t. cut-rank) iff it does
not contain all half-graphs as vertex-minors.

Theorem (Geelen, Kwon, McCarty, Wollan 2023)

A graph class “looks like trees” (w.r.t. cut-rank) iff it does not
contain all comparability grids as vertex-minors.
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Theorem (McCarty 24)

For any Eulerian graph G and vertex a, the maximum size of a
circuit decomposition where every circuit is odd and hits a equals

minimum,, x (7’(E(X)) + %|5(X)\ —odd,/(G — X)) .
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e Q: If an adversary secretly entangled a few qubits with |G),
how badly can they affect |G)?
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@ Q: Ask Caleb about random graphs.



Thank you!



