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form a basis for C2 ⊗ C2 ⊗ C2
called the computational basis.
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A 1-qubit quantum state is [ αβ ] ∈ C2 with norm 1.
For example, |0⟩ = [ 10 ] and |1⟩ = [ 01 ].

Each vertex is a qubit initialized to |+⟩ = (|0⟩+ |1⟩) /
√
2.

An n-qubit quantum state is |φ⟩ ∈ C2 ⊗ . . .⊗ C2 = (C2)⊗n.
A quantum gate is a matrix with UU† = U†U = I .
The controlled-Z gate CZuv negates |s⟩ if su = sv = 1.
A state is entangled if it cannot be written as

⊗
v∈V
|φv ⟩.
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Two states on the same set of qubits are local unitary equivalent
if they only differ up to 1-qubit gates.

Example: We can switch 0s and 1s on the first qubit; apply the

gate X =

[
0 1
1 0

]
to the first qubit.
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Theorem (Schlingemann 2002)

Every stabilizer state is LU-equivalent to a graph state.
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≡ 2, 3 mod 4

Two states on the same set of qubits are local Clifford equivalent
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complementing at v : switching adjacencies within N(v).
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Theorem (Van den Nest, Dehaene, De Moor 2004)

Two graph states |G ⟩ and |G ′⟩ are local Clifford equivalent iff
there is a sequence of vertices so that |G ′⟩ = |G ∗ v1 ∗ . . . ∗ vk⟩.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G ⟩ and |G ′⟩ are local unitary equivalent iff G ′

can be obtained from G by r-local complementation, for r ∈ Z+.

If S is an independent set and G ∗ S = G , i.e., every pair u, v have
|N(u) ∩ N(v) ∩ S| ≡ 0 mod 2, then we may instead switch
adjencies between u and v if |N(u) ∩ N(v) ∩ S| ≡ 2 mod 4.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G ⟩ and |G ′⟩ are local unitary equivalent iff G ′

can be obtained from G by r-local complementation, for r ∈ Z+.

Meta Conjecture (originally Schlingemann; see Krueger & Werner 05)

In general, r -local complementation is “not much more powerful”
than local complementation.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G ⟩ and |G ′⟩ are local unitary equivalent iff G ′

can be obtained from G by r-local complementation, for r ∈ Z+.

Theorem (Ji, Chen, Wei, and Ying 2010)

There exists a pair of graph states which are LU-equivalent but
not LC-equivalent.
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Theorem (Claudet and Perdrix 2025)

Two graph states |G ⟩ and |G ′⟩ are local unitary equivalent iff G ′

can be obtained from G by r-local complementation, for r ∈ Z+.

Theorem (Claudet, Geelen, Hahn, McCarty, Poulsen 2025+)

For circle graphs, LU-equivalence ↔ LC-equivalence.
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In measurement-based quantum computation, we:

First prepare a graph state |G ⟩.
Measure a qubit: measuring [ αβ ] in the computational basis
returns 0 with probability |α|2 and 1 with probability |β|2.
Choose the next measurement based on prior outcomes.
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Theorem (Raussendorf and Briegel 2001)

When every grid (“2D cluster state”) can be prepared, this is
equivalent to the quantum gate model (up to polynomial factors).
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quantum gate than grids?
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Which graph classes can serve as universal resources for quantum
computation?

“A One-Way
Quantum
Computer”

Raussendorf
& Briegel
2001

Question (see Rossi, Huber, Bruß, & Macciavello 13)

Are there architectures which are easier to build experimentally?
Perhaps hypergraph states?
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Theorem (Van den Nest, Dür, Vidal, & Briegel 2007)

Classes of graphs with logarithmic rank-width (i.e. “low
entanglement”) only yield classical computers.



Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?

−→ stabilizer state

Theorem (Bravyi & Raussendorf 07 + Bravyi, Gosset, & Liu 22)

However, high entanglement is not sufficient; there are also
“topological/geometric” obstructions.



Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?

Theorem (Harrison, Iyer, Parekh, Thompson, Zhao 25+)

The class of all circle graphs also yields a classical computer.



Question (see Van den Nest, Dür, Vidal, & Briegel 2007)

Which graph classes can serve as universal resources for quantum
computation?

Conjecture (Geelen)

Every class that does not yield a classical computer contains all
graphs up to local complementation and vertex deletion.
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The vertex-minors of a graph G are the graphs that can be
obtained from G by:
deleting vertices and
locally complementing at vertices (replaces the induced
subgraph on the neighborhood of v by its complement).

We may do all local complementations first.

Proposition (Dahlberg-Helsen-Wehner 20)

A graph H without isolated vertices is a vertex-minor of G iff
|H⟩ can be prepared from |G ⟩ using LC + LPM + CC.



The vertex-minors of a graph G are the graphs that can be
obtained from G by:
deleting vertices and
locally complementing at vertices (replaces the induced
subgraph on the neighborhood of v by its complement).

We may do all local complementations first.

Theorem (Cautrès, Claudet, Mhalla, Perdrix, Savin, & Thomassé 2024)

There are graphs with O(n2)-many vertices which contain
every n-vertex graph as a vertex-minor. This is best possible.



Structure Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose”
into parts that “almost embed” in a surface of bounded genus.

Figure by Felix Reidl

https://tcs.rwth-aachen.de/~reidl/
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Ongoing project with Jim Geelen & Paul Wollan
aiming to prove the conjecture.
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Theorem (Kwon, McCarty, Oum, Wollan 2021)

A graph class “looks like shallow trees” (w.r.t. cut-rank) iff it does
not contain all half-graphs as vertex-minors.

Theorem (Geelen, Kwon, McCarty, Wollan 2023)

A graph class “looks like trees” (w.r.t. cut-rank) iff it does not
contain all comparability grids as vertex-minors.



Theorem (McCarty 24)

For any Eulerian graph G and vertex a, the maximum size of a
circuit decomposition where every circuit is odd and hits a equals

minimumγ′,X

(
γ′(E (X )) +

1
2
|δ(X )| − oddγ′(G − X )

)
.
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Q: Ask Caleb about random graphs.



Thank you!


