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its ends. This can be seen in the incidence matrix over GF(2).
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To contract an edge e from a graph G, we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2).
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To contract an edge e from a graph G, we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:
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To contract an edge e from a graph G, we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

o fix a representation,

@ row-reduce to get a pivot in the column of e,
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To contract an edge e from a graph G, we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

o fix a representation,
@ row-reduce to get a pivot in the column of e,

@ and delete that row and column.
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To contract an edge e from a graph G, we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

o fix a representation,
@ row-reduce to get a pivot in the column of e,

@ and delete that row and column.
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A minor of M is any matroid that can be obtained from M by
deletion and contraction.
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To contract an edge e from a graph G, we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

o fix a representation,
@ row-reduce to get a pivot in the column of e,

@ and delete that row and column.

A minor of M is any matroid that can be obtained from M by
deletion and contraction. The girth of M is the length of a
shortest circuit (or oo if there are no circuits).



Theorem (Thomassen 1983)
Any graph with min-deg> 3 and girth> f(t) contains a Ki-minor.
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Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth> f(t, q)
contains either an M(K¢)-minor or an M(K;)*-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.



Theorem (Mader 1967)
Any simple graph with min-deg> f(t) contains a K¢-minor.
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Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth> f(t, q)
contains either an M(K¢)-minor or an M(K;)*-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.
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f(t,q) - n elements has an M(K:)-minor.
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Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f(t, q) - n elements has an M(K;)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph (M, B) by:

@ adding a vertex for each element in B and E(M) \ B,

e making EB*E(M) \ B adjacent to the elements in B with 1's.
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To delete x from the graph, delete if x ¢ B and contract if x € B.

Dualizing M changes the sides; so F(M, B) = F(M*, B¥*).
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Corollary

Let M be a GF(2)-represented matroid with no M(K:) or
M(K:)*-minor, and let B be a basis of M. Then for any set / of
m vertices in the fundamental graph,

H{N(v)NnA:veV(G)} < f(t) - m.
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Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph G = (X, Y) with no twins in X and
n(m) < c-mVm, 3 distinct u,v € Y so that [N(u)AN(v)| < f(c).

Such vertices are called near-twins.
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Consider a GF(2)-represented matroid M with no M(K}) or
M(K¢)* minor, and with a basis B. By the lemma, Je, f ¢ B so
that |N(e)AN(f)| < f(t). Then &+ f has support < f(t), and we
can add < f(t) elements from B to get a circuit.
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@ For each t and g, the fundamental graphs of GF(q)-representable
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@ For each t and g, the fundamental graphs of matroids with no U. 4,
M(K:) or M(K;)* minor.



Graph classes with linear neighborhood complexity (7 < ¢ - m)

@ For each t and g, the fundamental graphs of matroids with no Us g,
M(K:) or M(K;)* minor.

@ Planar graphs.
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@ For each t and g, the fundamental graphs of matroids with no Us g,
M(K:) or M(K;)* minor.

@ For each t, graphs with no K;-minor.
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Graph classes with linear neighborhood complexity (n < c-m)

@ For each t and g, the fundamental graphs of matroids with no U. 4,
M(K:) or M(K;)* minor.

@ For each t, graphs with no K;-minor.

@ For each t and f : N — N, graphs whose r-shallow-minors have
average degree < f(r) for every r.

This idea can be used to characterize classes of bounded expansion
[Reidl-Sanchez Villaamil-Stavropoulos 2019].
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Graph classes with linear neighborhood complexity (n < c-m)

@ For each t and g, the fundamental graphs of matroids with no U. 4,
M(K:) or M(K;)* minor.

@ For each t, graphs with no K;-minor.

@ For each t and f : N — N, graphs whose r-shallow-minors have
average degree < f(r) for every r.

@ For each d, the intersection graphs of sphere packings in R9.

Every planar graph has a coin packing [Koebe—Andreev—Thurston].
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Graph classes with linear neighborhood complexity (n < c-m)

@ For each t and g, the fundamental graphs of matroids with no U. 4,
M(K:) or M(K;)* minor.

@ For each t, graphs with no K;-minor.

@ For each t and f : N — N, graphs whose r-shallow-minors have
average degree < f(r) for every r.

@ For each d, the intersection graphs of sphere packings in R9.

@ For each k, the graphs of twin-width < k.

Introduced by [Bonnet-Kim-Thomassé-Watrigant 2021].



Graph classes with linear neighborhood complexity (n < c-m)
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For each t and g, the fundamental graphs of matroids with no U, g,
M(K:) or M(K;)* minor.

For each t, graphs with no K;-minor.

For each t and f : N — N, graphs whose r-shallow-minors have
average degree < f(r) for every r.

For each d, the intersection graphs of sphere packings in RY.
For each k, the graphs of twin-width < k.

For each k and f : N — N, the graphs of radius-r merge-width
< f(r) for every r.

resolve
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Introduced by [Dreier-Torunczyk 2025], proven by [Bonamy-Geniet 2025].
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Conjecture (folklore)

The same bound holds if FO logic cannot define all graphs.
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Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v).
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Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v). If G! is the 1-subdivision of G,
then Xodd(G') > x(G). Given a planar graph G, add a new vertex
adjacent to all others. Its fundamental graph equals G!.



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity < c - m for
every m has odd chromatic number < f(c).
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Question (DHKMU)
Does every fundamental graph of a planar graph have X ogqd < 57

Our bound: xoqq < 98.



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity < ¢ - m for
every m has odd chromatic number < f(c).
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Conjecture (DHKMU)

Every cosimple matroid of girth > f(t) contains at least one of
Utot, B(K:), M(K¢), and M(K¢)* as a minor.



Thank you!



