
Neighborhood complexity
and matroids

Rose McCarty
Schools of Math and CS

September 19, 2025

LSU Combinatorics Seminar



To contract an edge e from a graph G , we delete it and identify
its ends.



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2).



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2).



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2).



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,

row-reduce to get a pivot in the column of e,



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,

row-reduce to get a pivot in the column of e,

and delete that row and column.



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,

row-reduce to get a pivot in the column of e,

and delete that row and column.

A minor of M is any matroid that can be obtained from M by
deletion and contraction.



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,

row-reduce to get a pivot in the column of e,

and delete that row and column.

A minor of M is any matroid that can be obtained from M by
deletion and contraction. The girth of M is the length of a
shortest circuit (or ∞ if there are no circuits).



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,

row-reduce to get a pivot in the column of e,

and delete that row and column.

A minor of M is any matroid that can be obtained from M by
deletion and contraction. The girth of M is the length of a
shortest circuit (or ∞ if there are no circuits).



To contract an edge e from a graph G , we delete it and identify
its ends. This can be seen in the incidence matrix over GF(2). To
contract an element e from a GF(q)-representable matroid M:

fix a representation,

row-reduce to get a pivot in the column of e,

and delete that row and column.

A minor of M is any matroid that can be obtained from M by
deletion and contraction. The girth of M is the length of a
shortest circuit (or ∞ if there are no circuits).



Theorem (Thomassen 1983)

Any graph with min-deg≥ 3 and girth≥ f (t) contains a Kt-minor.



Theorem (Thomassen 1983)

Any graph with min-deg≥ 3 and girth≥ f (t) contains a Kt-minor.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth≥ f (t, q)
contains either an M(Kt)-minor or an M(Kt)

∗-minor.



Theorem (Thomassen 1983)

Any graph with min-deg≥ 3 and girth≥ f (t) contains a Kt-minor.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth≥ f (t, q)
contains either an M(Kt)-minor or an M(Kt)

∗-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.



Theorem (Thomassen 1983)

Any graph with min-deg≥ 3 and girth≥ f (t) contains a Kt-minor.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth≥ f (t, q)
contains either an M(Kt)-minor or an M(Kt)

∗-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.



Theorem (Thomassen 1983)

Any graph with min-deg≥ 3 and girth≥ f (t) contains a Kt-minor.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth≥ f (t, q)
contains either an M(Kt)-minor or an M(Kt)

∗-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.



Theorem (Thomassen 1983)

Any graph with min-deg≥ 3 and girth≥ f (t) contains a Kt-minor.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth≥ f (t, q)
contains either an M(Kt)-minor or an M(Kt)

∗-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.



Theorem (Mader 1967)

Any simple graph with min-deg≥ f (t) contains a Kt-minor.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any cosimple GF(q)-representable matroid with girth≥ f (t, q)
contains either an M(Kt)-minor or an M(Kt)

∗-minor.

A matroid is cosimple if its dual has no loops or parallel pairs.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any simple rank-n GF(q)-representable matroid with at least
f (t, q) · n elements has an M(Kt)-minor.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.

To delete x from the graph, delete if x /∈ B



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.

To delete x from the graph, delete if x /∈ B



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.

To delete x from the graph, delete if x /∈ B and contract if x ∈ B.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.

To delete x from the graph, delete if x /∈ B and contract if x ∈ B.



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.

To delete x from the graph, delete if x /∈ B and contract if x ∈ B.
Dualizing M changes the sides; so F(M,B) = F(M∗,B*).



Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omana 23+)

Any rank-n GF(q)-represented matroid with no repeated
columns and at least f (t, q) · n elements has an M(Kt)-minor.

Let M be a GF(2)-represented matroid with basis B. Form the
fundamental graph F(M,B) by:

adding a vertex for each element in B and E (M) \ B,
making x ∈ E (M) \ B adjacent to the elements in B with 1’s.

To delete x from the graph, delete if x /∈ B and contract if x ∈ B.
Dualizing M changes the sides; so F(M,B) = F(M∗,B*).



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Corollary

Let M be a GF(2)-represented matroid with no M(Kt) or
M(Kt)

∗-minor, and let B be a basis of M. Then for any set A of
m vertices in the fundamental graph,

|{N(v) ∩ A : v ∈ V (G )}| ≤ f (t) ·m.

The neighborhood complexity of a graph G is the function
η : N → N so that η(m) = maxA⊆V (G)

|A|=m

|{N(v) ∩ A : v ∈ V (G )}|.



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m,



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).

Such vertices are called near-twins.



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).

Such vertices are called near-twins.

Consider a GF(2)-represented matroid M with no M(Kt) or
M(Kt)

∗ minor, and with a basis B.



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).

Such vertices are called near-twins.

Consider a GF(2)-represented matroid M with no M(Kt) or
M(Kt)

∗ minor, and with a basis B. By the lemma, ∃e, f /∈ B so
that |N(e)∆N(f )| ≤ f (t).



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).

Such vertices are called near-twins.

Consider a GF(2)-represented matroid M with no M(Kt) or
M(Kt)

∗ minor, and with a basis B. By the lemma, ∃e, f /∈ B so
that |N(e)∆N(f )| ≤ f (t).



Lemma (Corollary of Haussler’s Shallow Packing Lemma, 1995)

For any bipartite graph G = (X,Y ) with no twins in X and
η(m) ≤ c ·m ∀m, ∃ distinct u, v ∈ Y so that |N(u)∆N(v)| ≤ f (c).

Such vertices are called near-twins.

Consider a GF(2)-represented matroid M with no M(Kt) or
M(Kt)

∗ minor, and with a basis B. By the lemma, ∃e, f /∈ B so
that |N(e)∆N(f )| ≤ f (t). Then e⃗ + f⃗ has support ≤ f (t), and we
can add ≤ f (t) elements from B to get a circuit.



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of GF(q)-representable
matroids with no M(Kt) or M(Kt)

∗ minor.



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

Planar graphs.



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

This idea can be used to characterize classes of bounded expansion
[Reidl-Sánchez Villaamil-Stavropoulos 2019].



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

For each d , the intersection graphs of sphere packings in Rd .



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

For each d , the intersection graphs of sphere packings in Rd .



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

For each d , the intersection graphs of sphere packings in Rd .



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

For each d , the intersection graphs of sphere packings in Rd .



Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

For each d , the intersection graphs of sphere packings in Rd .

Every planar graph has a coin packing [Koebe–Andreev–Thurston].
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Graph classes with linear neighborhood complexity (η ≤ c ·m)

For each t and q, the fundamental graphs of matroids with no U2,q,
M(Kt) or M(Kt)

∗ minor.

For each t, graphs with no Kt-minor.

For each t and f : N → N, graphs whose r-shallow-minors have
average degree ≤ f (r) for every r .

For each d , the intersection graphs of sphere packings in Rd .

For each k, the graphs of twin-width ≤ k .

For each k and f : N → N, the graphs of radius-r merge-width
≤ f (r) for every r .

Introduced by [Dreier-Torunczyk 2025], proven by [Bonamy-Geniet 2025].
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Conjecture (folklore)

The same bound holds if FO logic cannot define all graphs.



Idea: We only care about graph properties that can be
expressed in a certain language.



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).



Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v).



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v). If G 1 is the 1-subdivision of G ,
then χodd(G

1) ≥ χ(G ).



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v). If G 1 is the 1-subdivision of G ,
then χodd(G

1) ≥ χ(G ). Given a planar graph G ,



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v). If G 1 is the 1-subdivision of G ,
then χodd(G

1) ≥ χ(G ). Given a planar graph G , add a new vertex
adjacent to all others.



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Color so that every non-isolated vertex v has a color which appears
an odd number of times in N(v). If G 1 is the 1-subdivision of G ,
then χodd(G

1) ≥ χ(G ). Given a planar graph G , add a new vertex
adjacent to all others. Its fundamental graph equals G 1.



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Question (DHKMU)

Does every fundamental graph of a planar graph have χodd ≤ 5?

Our bound: χodd ≤ 98.



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

Any bipartite graph with neighborhood complexity ≤ c ·m for
every m has odd chromatic number ≤ f (c).

Conjecture (DHKMU)

Every cosimple matroid of girth ≥ f (t) contains at least one of
Ut,2t , B(Kt), M(Kt), and M(Kt)

∗ as a minor.



Thank you!


