

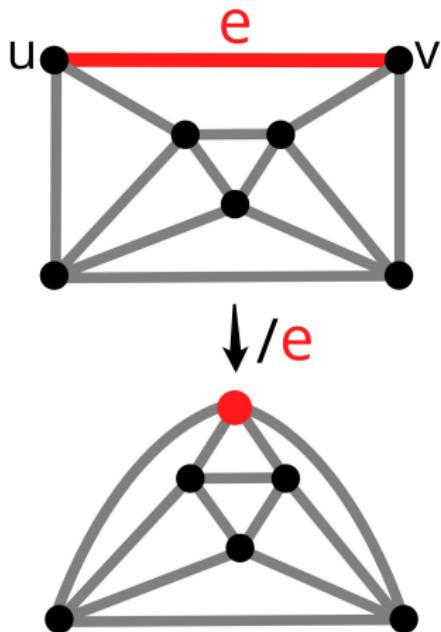
Neighborhood complexity and matroids

Rose McCarty

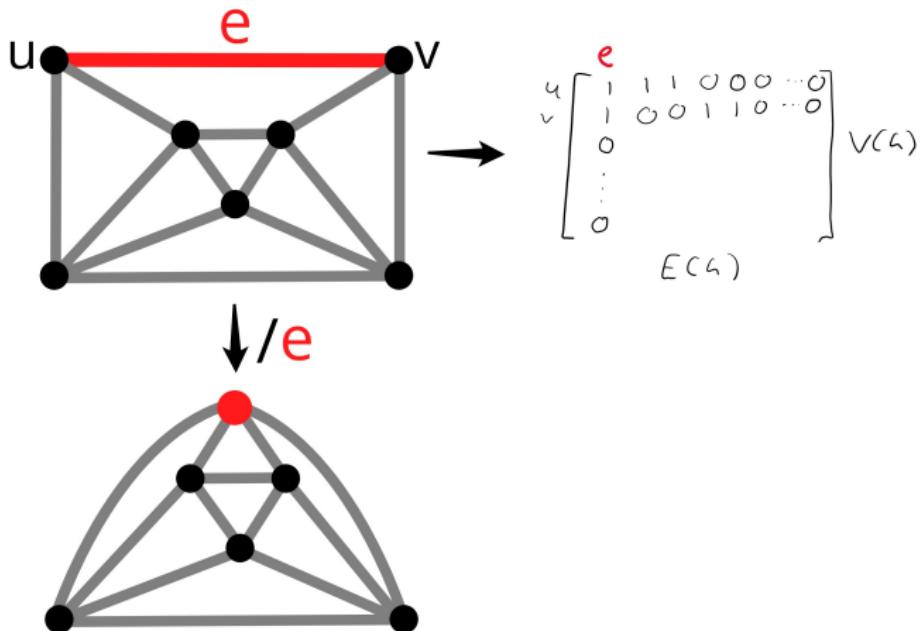
Schools of Math and CS

September 19, 2025
LSU Combinatorics Seminar

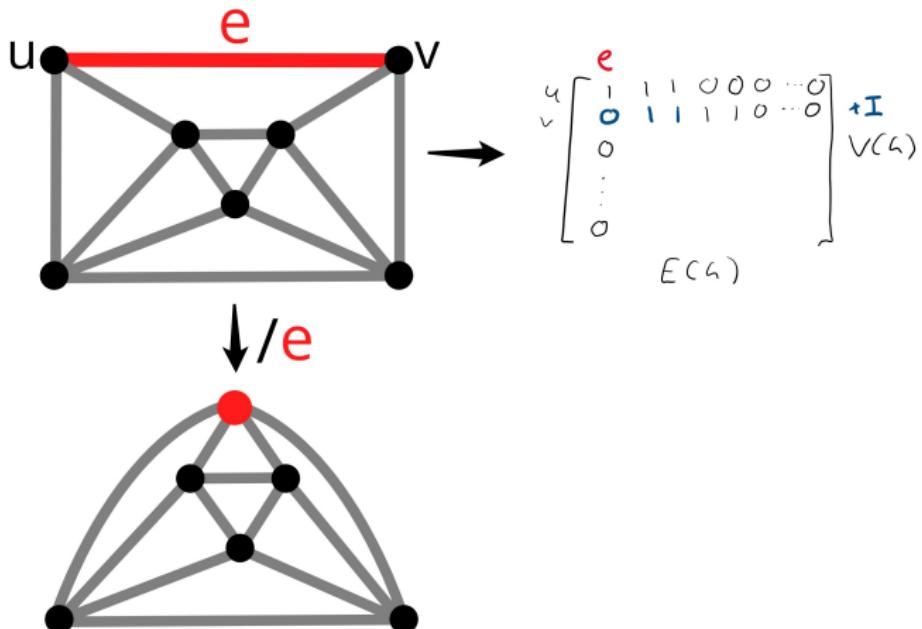
To **contract** an edge e from a graph G , we delete it and identify its ends.



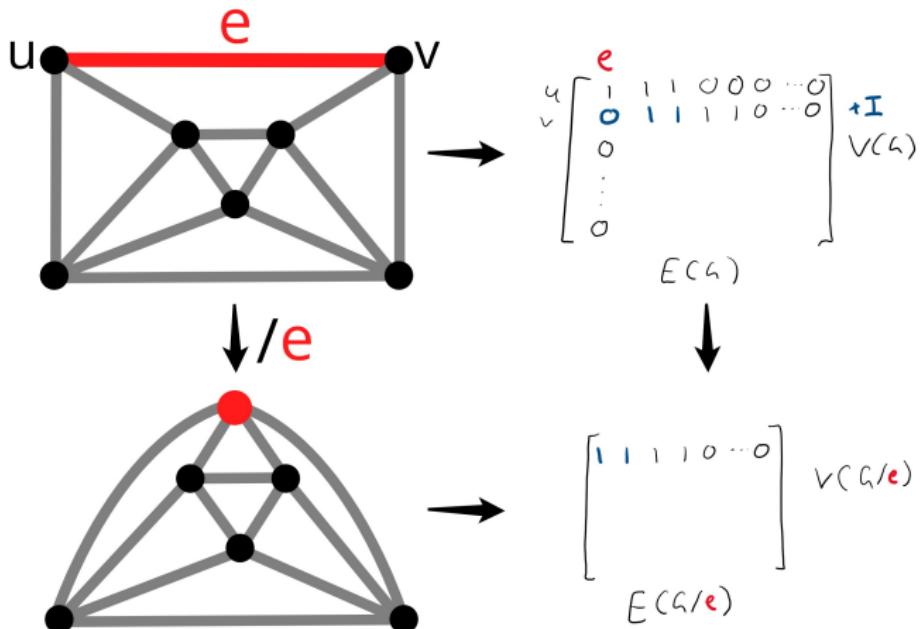
To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$.



To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$.



To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$.



To **contract** an edge **e** from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element **e** from a $GF(q)$ -representable **matroid** M :

$$U_{2,4}$$

To **contract** an edge **e** from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element **e** from a $GF(q)$ -representable **matroid** M :

- fix a representation,

$$\begin{matrix} e \\ \begin{bmatrix} 1 & 2 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 2 & 2 & 1 & 0 \end{bmatrix} \\ E(M) \end{matrix}$$

To **contract** an edge **e** from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element **e** from a $GF(q)$ -representable **matroid** M :

- fix a representation,
- row-reduce to get a pivot in the column of **e**,

$$\begin{array}{c}
 \text{e} \\
 \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 2 & 2 & 1 & 0 \end{array} \right] \leftrightarrow \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right] \begin{array}{l} +2I \\ +I \\ +I \end{array} \\
 E(M) \qquad \qquad \qquad E(M)
 \end{array}$$

To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element e from a $GF(q)$ -representable **matroid** M :

- fix a representation,
- row-reduce to get a pivot in the column of e ,
- and delete that row and column.

$$\begin{array}{c}
 \text{e} \\
 \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 2 & 2 & 1 & 0 \end{array} \right] \quad \leftrightarrow \quad \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right] \xrightarrow{\begin{array}{l} +2I \\ +I \\ +I \end{array}} \quad \begin{array}{c} \text{e} \\ /e \end{array} \\
 E(M) \qquad \qquad \qquad E(M) \qquad \qquad \qquad E(M/e)
 \end{array}$$

To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element e from a $GF(q)$ -representable **matroid** M :

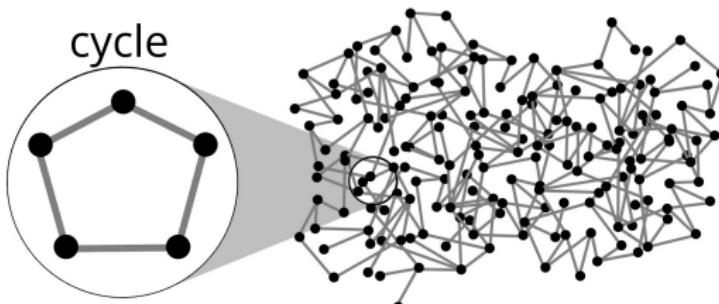
- fix a representation,
- row-reduce to get a pivot in the column of e ,
- and delete that row and column.

$$\begin{array}{c}
 \text{e} \\
 \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 2 & 2 & 1 & 0 \end{array} \right] \quad \leftrightarrow \quad \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right] \xrightarrow{\begin{array}{l} +2I \\ +I \\ +I \end{array}} \left[\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right] \quad /e \\
 E(M) \qquad \qquad \qquad E(M) \qquad \qquad \qquad E(M/e)
 \end{array}$$

A **minor** of M is any matroid that can be obtained from M by deletion and contraction.

To **contract** an edge **e** from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element **e** from a $GF(q)$ -representable **matroid** M :

- fix a representation,
- row-reduce to get a pivot in the column of **e**,
- and delete that row and column.



A **minor** of M is any matroid that can be obtained from M by deletion and contraction. The **girth** of M is the length of a shortest circuit (or ∞ if there are no circuits).

To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element e from a $GF(q)$ -representable **matroid** M :

- fix a representation,
- row-reduce to get a pivot in the column of e ,
- and delete that row and column.

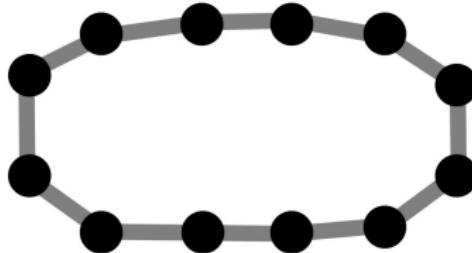
$$2 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

minimize

A **minor** of M is any matroid that can be obtained from M by deletion and contraction. The **girth** of M is the length of a shortest circuit (or ∞ if there are no circuits).

To **contract** an edge e from a graph G , we delete it and identify its ends. This can be seen in the **incidence matrix** over $GF(2)$. To contract an element e from a $GF(q)$ -representable **matroid** M :

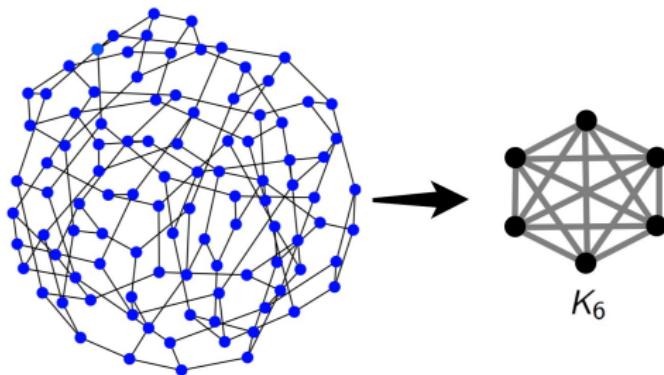
- fix a representation,
- row-reduce to get a pivot in the column of e ,
- and delete that row and column.



A **minor** of M is any matroid that can be obtained from M by deletion and contraction. The **girth** of M is the length of a shortest circuit (or ∞ if there are no circuits).

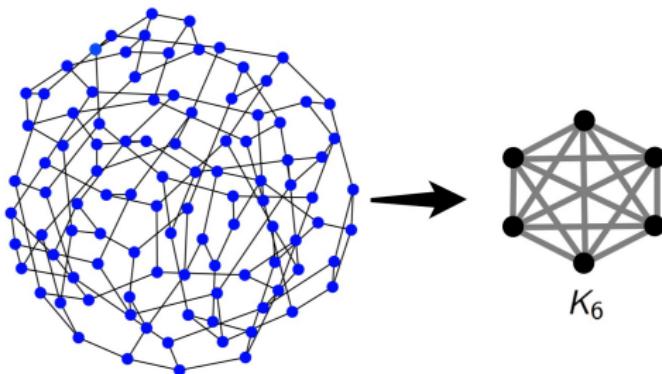
Theorem (Thomassen 1983)

Any graph with $\text{min-deg} \geq 3$ and $\text{girth} \geq f(t)$ contains a K_t -minor.



Theorem (Thomassen 1983)

Any graph with **min-deg** ≥ 3 and **girth** $\geq f(t)$ contains a K_t -minor.

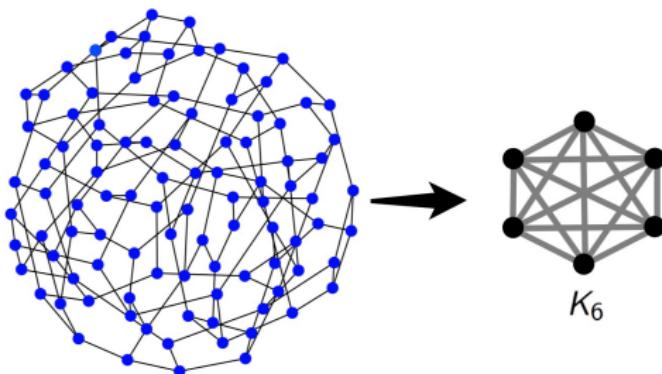


Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any **cosimple** $GF(q)$ -representable matroid with **girth** $\geq f(t, q)$ contains either an $M(K_t)$ -minor or an $M(K_t)^*$ -minor.

Theorem (Thomassen 1983)

Any graph with **min-deg** ≥ 3 and **girth** $\geq f(t)$ contains a K_t -minor.



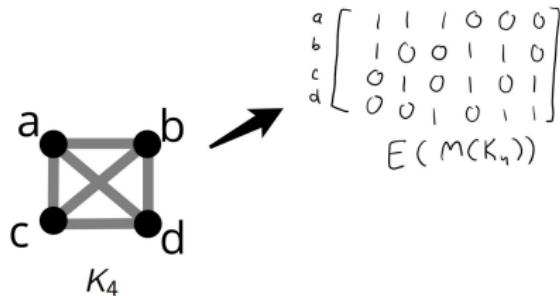
Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any **cosimple** $GF(q)$ -representable matroid with **girth** $\geq f(t, q)$ contains either an $M(K_t)$ -minor or an $M(K_t)^*$ -minor.

A matroid is **cosimple** if its dual has no loops or parallel pairs.

Theorem (Thomassen 1983)

Any graph with **min-deg** ≥ 3 and **girth** $\geq f(t)$ contains a K_t -minor.



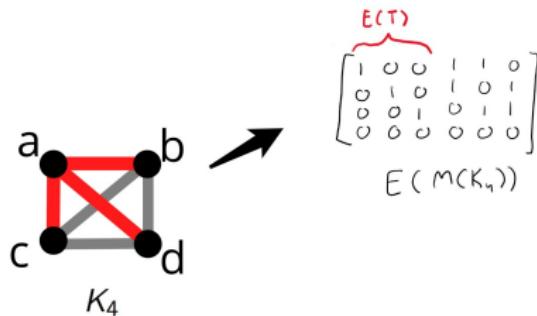
Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any **cosimple** $GF(q)$ -representable matroid with **girth** $\geq f(t, q)$ contains either an $M(K_t)$ -minor or an $M(K_t)^*$ -minor.

A matroid is **cosimple** if its dual has no loops or parallel pairs.

Theorem (Thomassen 1983)

Any graph with **min-deg** ≥ 3 and **girth** $\geq f(t)$ contains a K_t -minor.



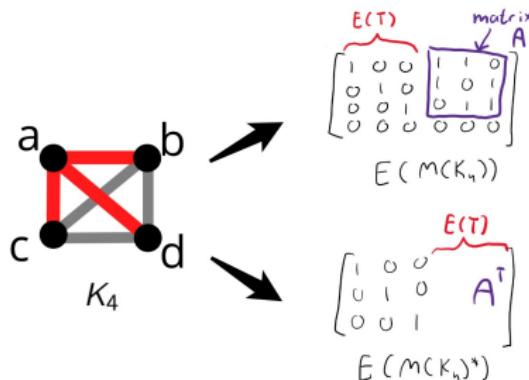
Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any **cosimple** $GF(q)$ -representable matroid with **girth** $\geq f(t, q)$ contains either an $M(K_t)$ -minor or an $M(K_t)^*$ -minor.

A matroid is **cosimple** if its dual has no loops or parallel pairs.

Theorem (Thomassen 1983)

Any graph with $\text{min-deg} \geq 3$ and $\text{girth} \geq f(t)$ contains a K_t -minor.



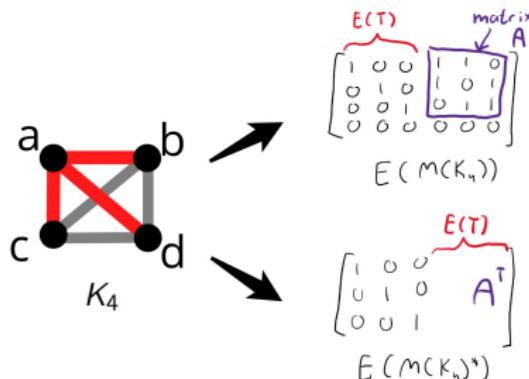
Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any **cosimple** $GF(q)$ -representable matroid with $\text{girth} \geq f(t, q)$ contains either an $M(K_t)$ -minor or an $M(K_t)^*$ -minor.

A matroid is **cosimple** if its dual has no loops or parallel pairs.

Theorem (Mader 1967)

Any **simple** graph with $\text{min-deg} \geq f(t)$ contains a K_t -minor.



Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025)

Any **cosimple** $GF(q)$ -representable matroid with $\text{girth} \geq f(t, q)$ contains either an $M(K_t)$ -minor or an $M(K_t)^*$ -minor.

A matroid is **cosimple** if its dual has no loops or parallel pairs.

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any **simple** rank- n $GF(q)$ -representable matroid with at least $f(t, q) \cdot n$ **elements** has an $M(K_t)$ -minor.

basis B $\leq c \cdot |B|$

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \quad \begin{array}{cccccc} 2 & 2 & 0 & 1 & 1 & 2 \\ 2 & 1 & 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 2 & 2 & 1 \\ 0 & 2 & 1 & 0 & 2 & 1 \end{array} \right]$$

$E(M)$

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

basis B $\leq C \cdot |B|$

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \quad \begin{array}{cccccc} 2 & 2 & 0 & 1 & 1 & 2 \\ 2 & 1 & 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 2 & 2 & 1 \\ 0 & 2 & 1 & 0 & 2 & 1 \end{array} \right]$$

$E(M)$

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} .

$$\underbrace{\mathbf{B}}_{\left[\begin{array}{cccc|ccc} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array} \right]} \\ E(M)$$

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

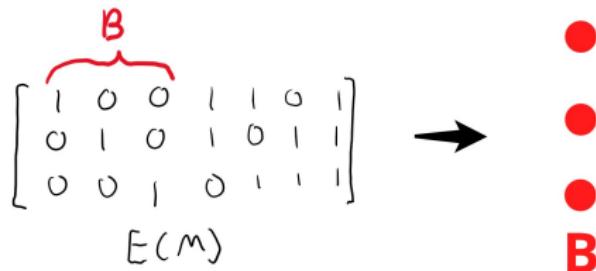
$$\underbrace{\mathbf{B}}_{\left[\begin{array}{cccc|ccc} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array} \right]} \mathcal{E}(M)$$

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B}

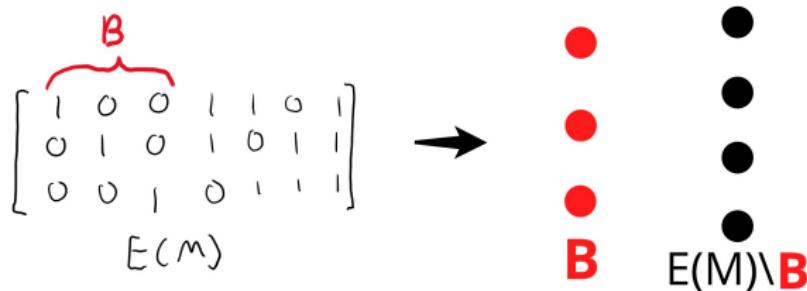


Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,

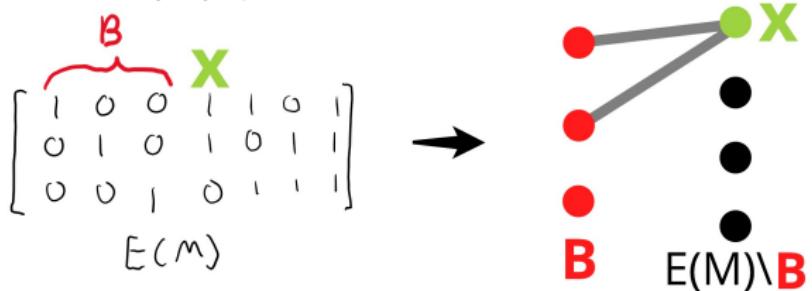


Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $\mathbf{x} \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.

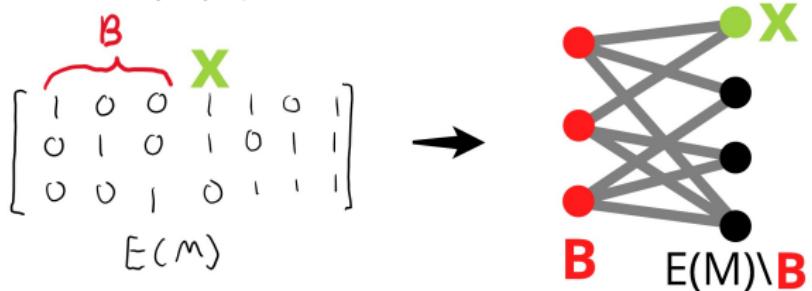


Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $\mathbf{x} \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.

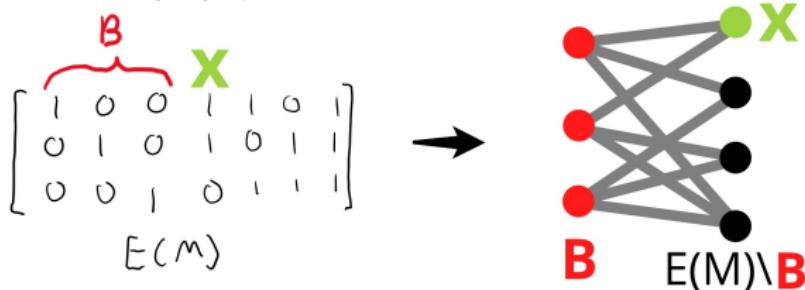


Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $\mathbf{x} \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.



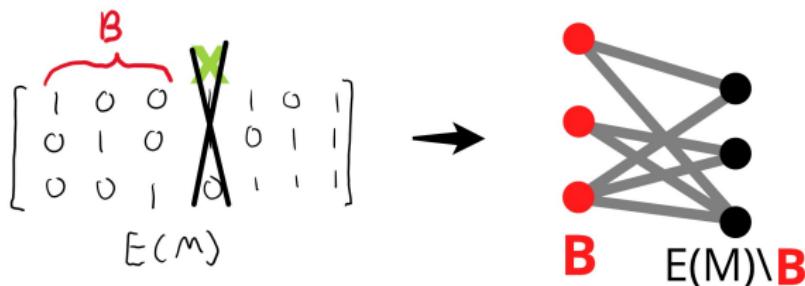
To delete \mathbf{x} from the graph, delete if $\mathbf{x} \notin \mathbf{B}$

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $x \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.



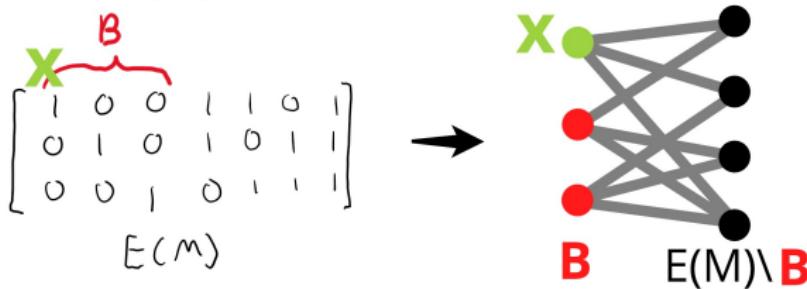
To delete x from the graph, delete if $x \notin \mathbf{B}$

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $\mathbf{x} \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.



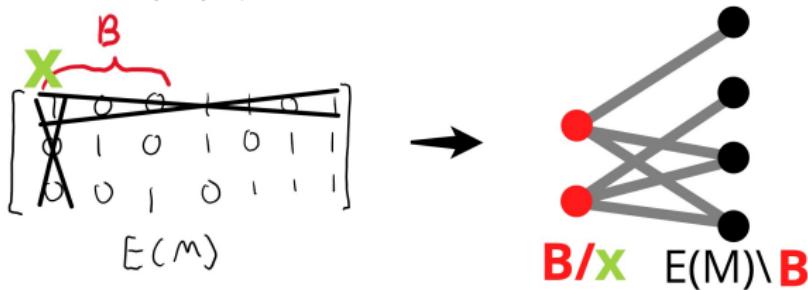
To delete \mathbf{x} from the graph, delete if $\mathbf{x} \notin \mathbf{B}$ and contract if $\mathbf{x} \in \mathbf{B}$.

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $\mathbf{x} \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.



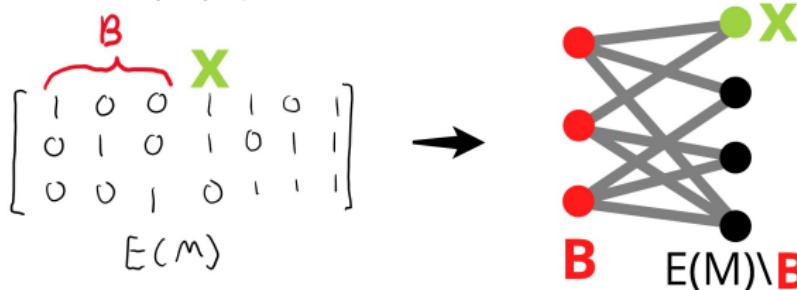
To delete \mathbf{x} from the graph, delete if $\mathbf{x} \notin \mathbf{B}$ and contract if $\mathbf{x} \in \mathbf{B}$.

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with no repeated columns and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the fundamental graph $\mathcal{F}(M, \mathbf{B})$ by:

- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $\mathbf{x} \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.



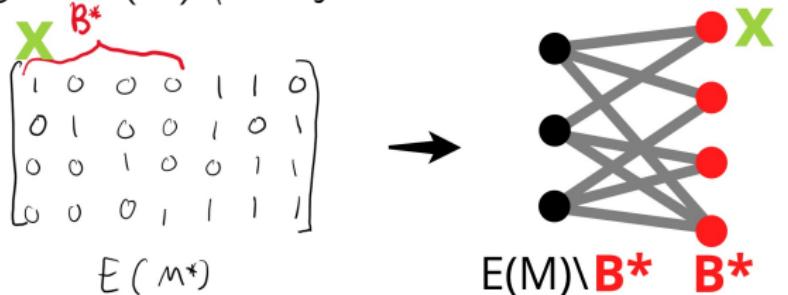
To delete \mathbf{x} from the graph, delete if $\mathbf{x} \notin \mathbf{B}$ and contract if $\mathbf{x} \in \mathbf{B}$. Dualizing M changes the sides; so $\mathcal{F}(M, \mathbf{B}) = \mathcal{F}(M^*, \mathbf{B}^*)$.

Theorem (Geelen-Whittle 03; Nelson-Norin-Rivera Omaha 23+)

Any rank- n $GF(q)$ -represented matroid with **no repeated columns** and at least $f(t, q) \cdot n$ elements has an $M(K_t)$ -minor.

Let M be a $GF(2)$ -represented matroid with basis \mathbf{B} . Form the **fundamental graph** $\mathcal{F}(M, \mathbf{B})$ by:

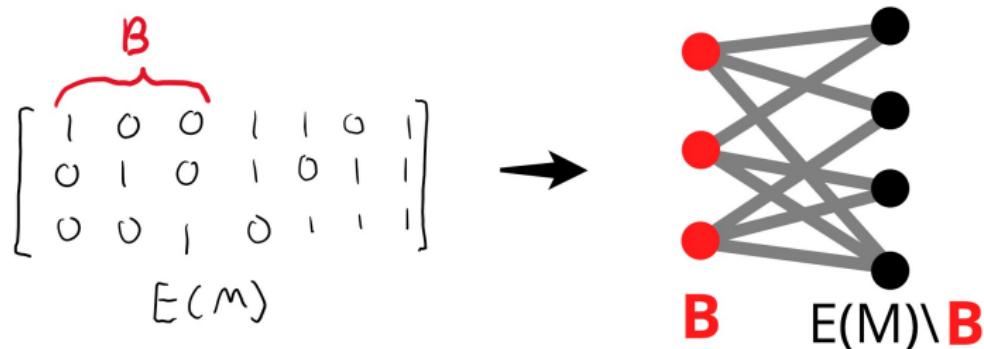
- adding a vertex for each element in \mathbf{B} and $E(M) \setminus \mathbf{B}$,
- making $x \in E(M) \setminus \mathbf{B}$ adjacent to the elements in \mathbf{B} with 1's.



To delete x from the graph, delete if $x \notin \mathbf{B}$ and contract if $x \in \mathbf{B}$. Dualizing M changes the sides; so $\mathcal{F}(M, \mathbf{B}) = \mathcal{F}(M^*, \mathbf{B}^*)$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M .



Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

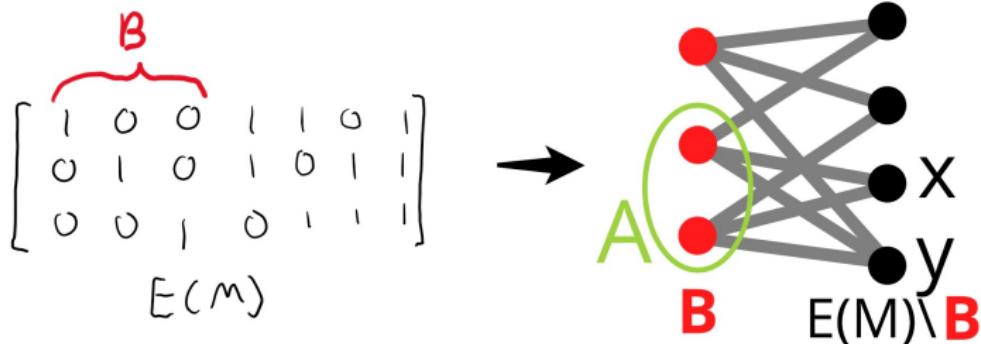
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{E(M)} \begin{array}{c} \text{A} \\ \text{B} \\ E(M) \setminus \text{B} \end{array}$$

The diagram illustrates the correspondence between a matrix representation of a matroid and its fundamental graph. On the left, a 3×7 matrix is shown with a red bracket above the first three columns labeled \mathbf{B} . An arrow points to the right, leading to a graph with 7 vertices. A green circle labeled \mathbf{A} encloses the first three vertices. A red label \mathbf{B} is placed below the first three vertices. A red label $E(M) \setminus \mathbf{B}$ is placed to the right of the last four vertices. Edges connect the first three vertices to all other vertices, representing the columns of the matrix.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

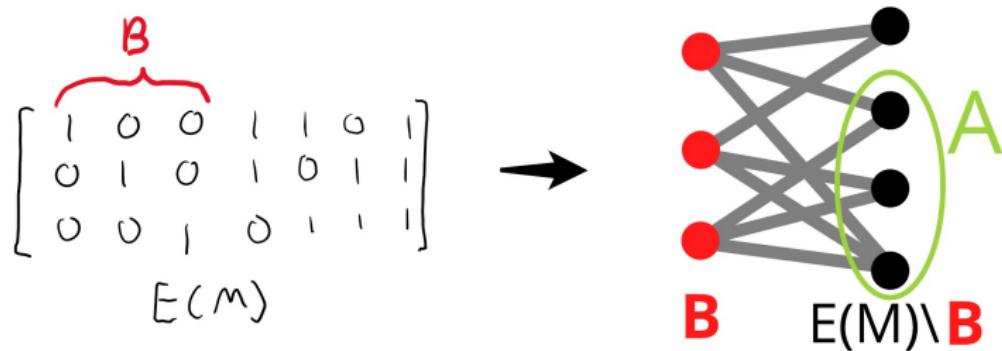
$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$



Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

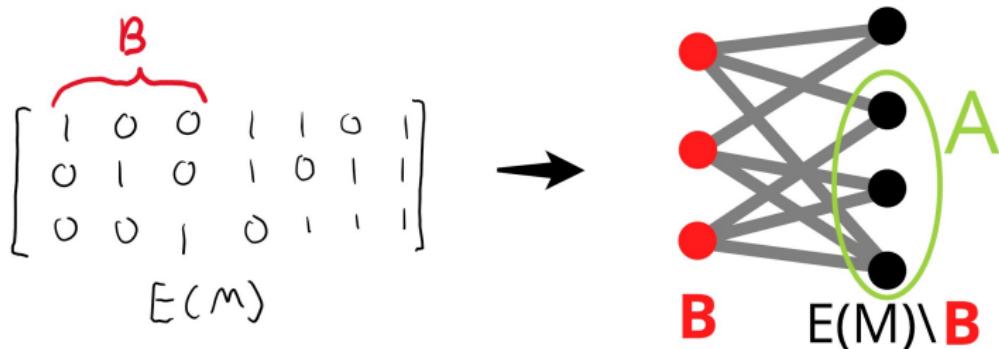
$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$



Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

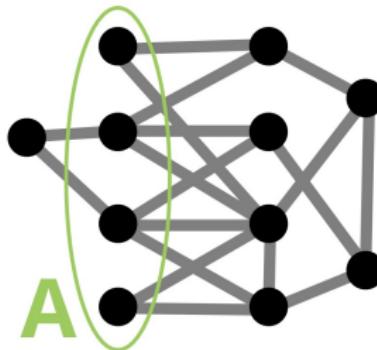


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

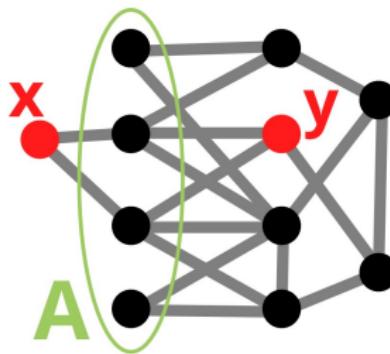


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

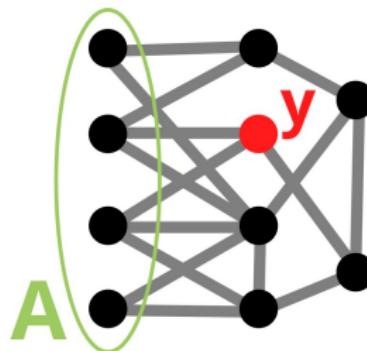


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

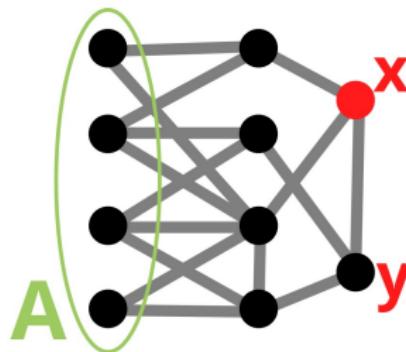


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

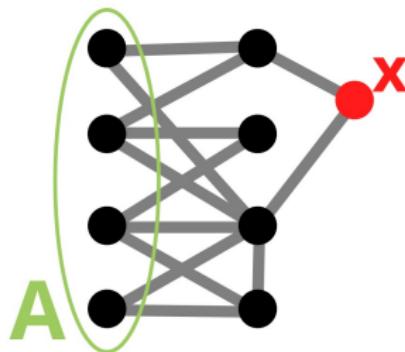


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

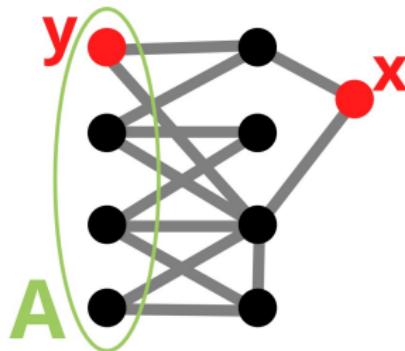


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$

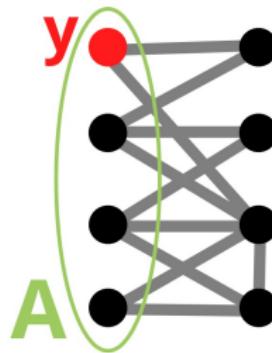


The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

Corollary

Let M be a $GF(2)$ -represented matroid with no $M(K_t)$ or $M(K_t)^*$ -minor, and let \mathbf{B} be a basis of M . Then for any set \mathbf{A} of m vertices in the fundamental graph,

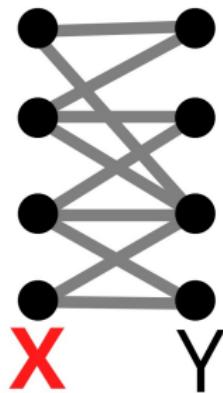
$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq f(t) \cdot m.$$



The **neighborhood complexity** of a graph G is the function $\eta : \mathbb{N} \rightarrow \mathbb{N}$ so that $\eta(m) = \max_{\substack{\mathbf{A} \subseteq V(G) \\ |\mathbf{A}|=m}} |\{N(v) \cap \mathbf{A} : v \in V(G)\}|$.

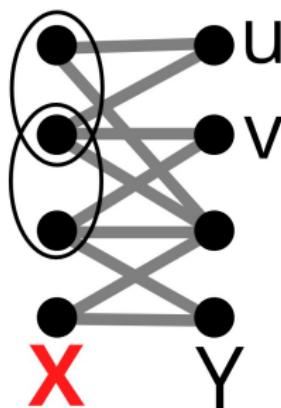
Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and
 $\eta(m) \leq c \cdot m \ \forall m$,



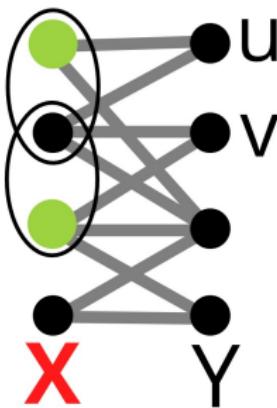
Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and $\eta(m) \leq c \cdot m \ \forall m, \exists$ distinct $u, v \in \mathbf{Y}$ so that $|N(u) \Delta N(v)| \leq f(c)$.



Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

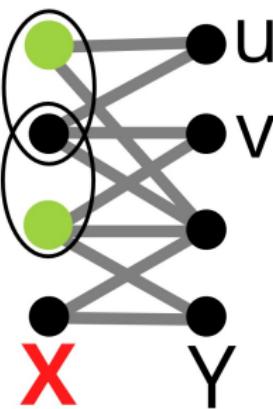
For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and $\eta(m) \leq c \cdot m \ \forall m$, \exists distinct $u, v \in \mathbf{Y}$ so that $|N(u) \Delta N(v)| \leq f(c)$.



Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (X, Y)$ with no twins in X and $\eta(m) \leq c \cdot m \ \forall m, \exists$ distinct $u, v \in Y$ so that $|N(u) \Delta N(v)| \leq f(c)$.

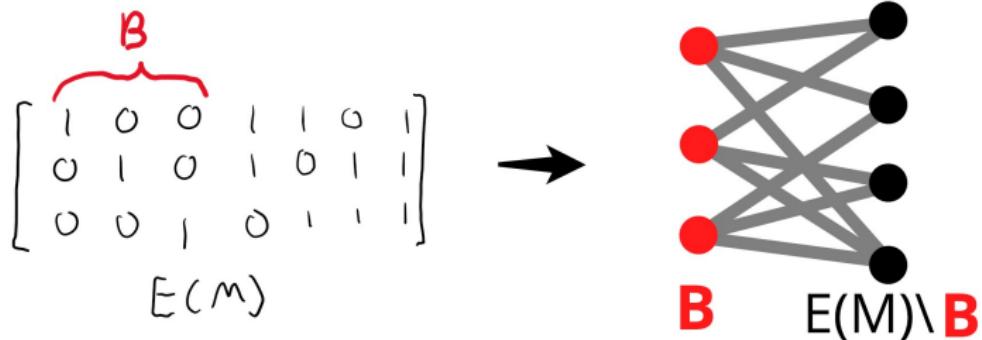
Such vertices are called **near-twins**.



Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and $\eta(m) \leq c \cdot m \ \forall m, \exists$ distinct $u, v \in \mathbf{Y}$ so that $|N(u) \Delta N(v)| \leq f(c)$.

Such vertices are called **near-twins**.

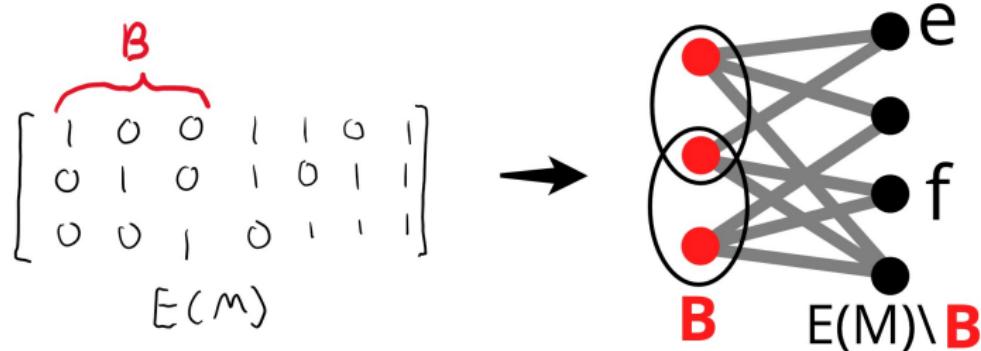


Consider a $\text{GF}(2)$ -represented matroid M with no $M(K_t)$ or $M(K_t)^*$ minor, and with a basis \mathbf{B} .

Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and $\eta(m) \leq c \cdot m \ \forall m, \exists$ distinct $u, v \in \mathbf{Y}$ so that $|N(u) \Delta N(v)| \leq f(c)$.

Such vertices are called **near-twins**.

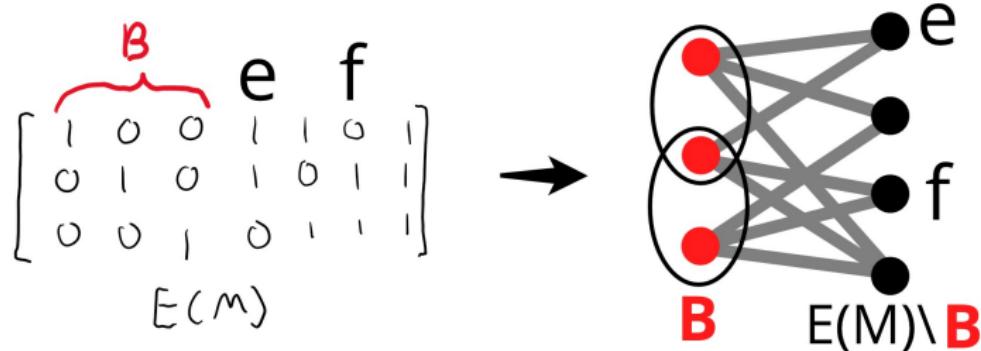


Consider a $GF(2)$ -represented matroid M with no $M(K_t)$ or $M(K_t)^*$ minor, and with a basis \mathbf{B} . By the lemma, $\exists e, f \notin \mathbf{B}$ so that $|N(e) \Delta N(f)| \leq f(t)$.

Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and $\eta(m) \leq c \cdot m \ \forall m, \exists$ distinct $u, v \in \mathbf{Y}$ so that $|N(u) \Delta N(v)| \leq f(c)$.

Such vertices are called **near-twins**.

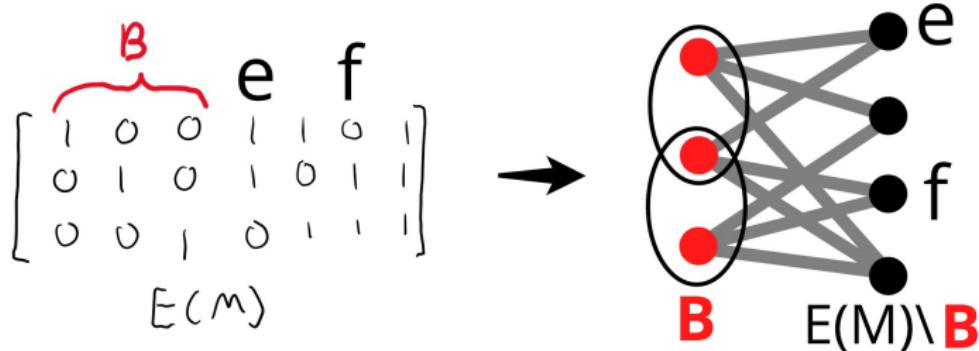


Consider a $GF(2)$ -represented matroid M with no $M(K_t)$ or $M(K_t)^*$ minor, and with a basis \mathbf{B} . By the lemma, $\exists e, f \notin \mathbf{B}$ so that $|N(e) \Delta N(f)| \leq f(t)$.

Lemma (Corollary of Haussler's Shallow Packing Lemma, 1995)

For any bipartite graph $G = (\mathbf{X}, \mathbf{Y})$ with no twins in \mathbf{X} and $\eta(m) \leq c \cdot m \ \forall m, \exists$ distinct $u, v \in \mathbf{Y}$ so that $|N(u) \Delta N(v)| \leq f(c)$.

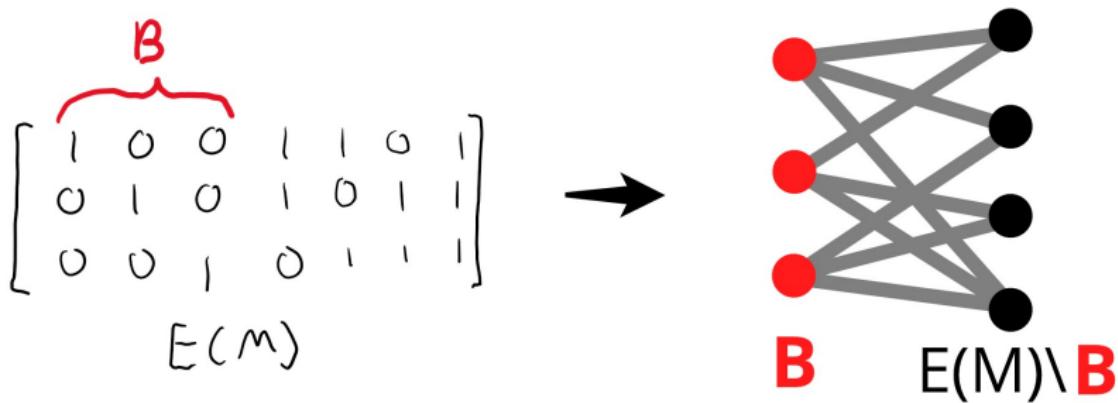
Such vertices are called **near-twins**.



Consider a $GF(2)$ -represented matroid M with no $M(K_t)$ or $M(K_t)^*$ minor, and with a basis \mathbf{B} . By the lemma, $\exists e, f \notin \mathbf{B}$ so that $|N(e) \Delta N(f)| \leq f(t)$. Then $\vec{e} + \vec{f}$ has support $\leq f(t)$, and we can add $\leq f(t)$ elements from \mathbf{B} to get a circuit.

Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of $\text{GF}(q)$ -representable matroids with no $M(K_t)$ or $M(K_t)^*$ minor.



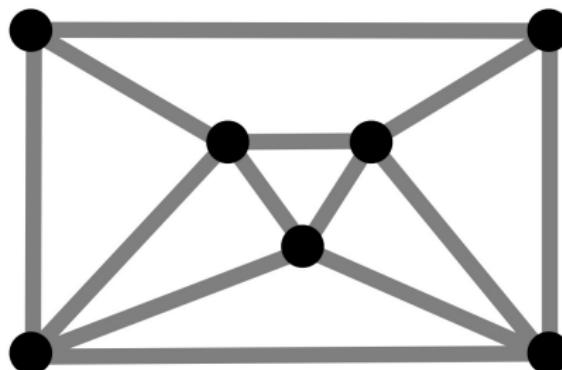
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.

$$U_{2,4}$$

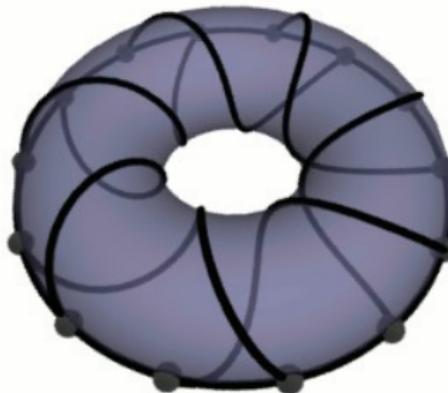
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- Planar graphs.



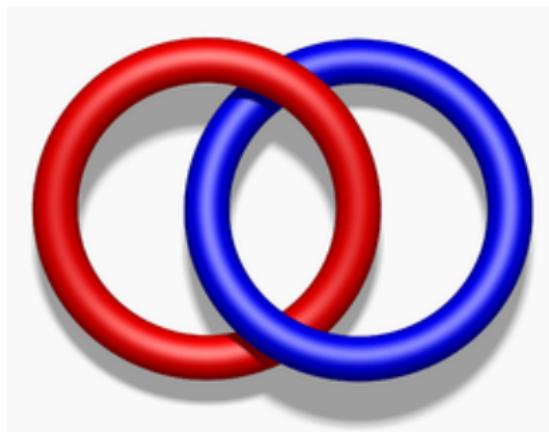
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.



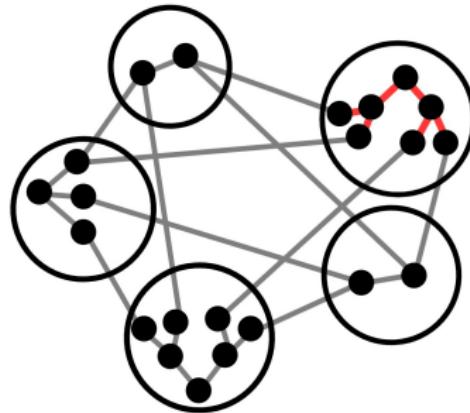
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.



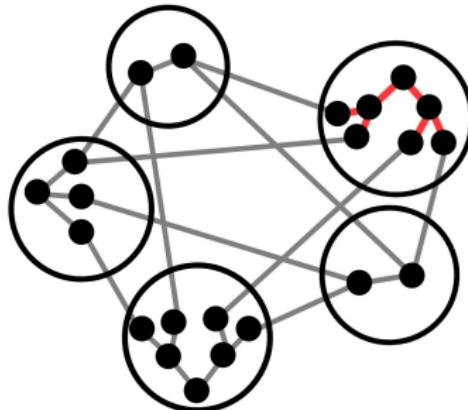
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .



Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

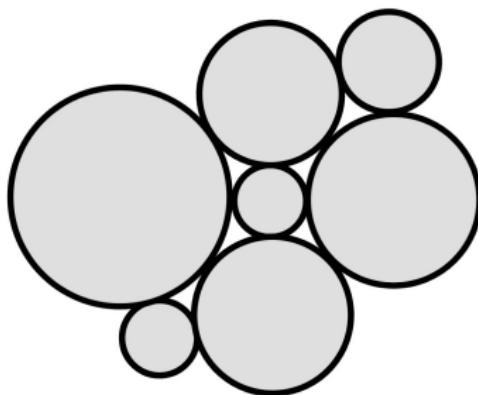
- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .



This idea can be used to characterize classes of **bounded expansion** [Reidl-Sánchez Villaamil-Stavropoulos 2019].

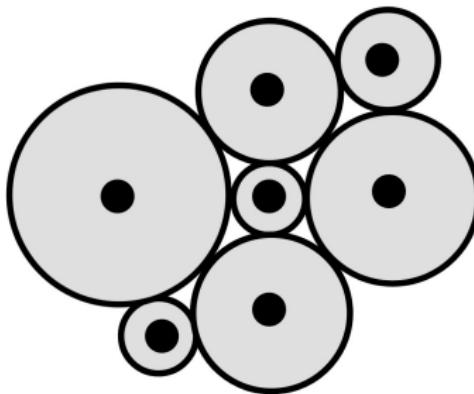
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .



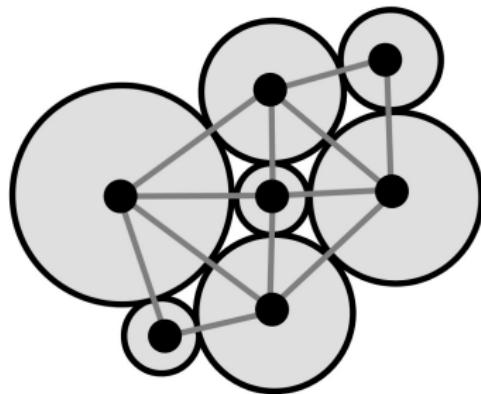
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .



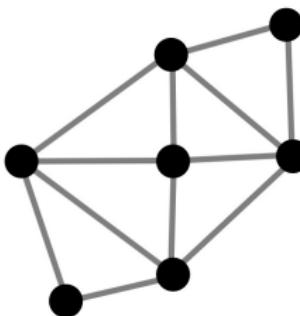
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .



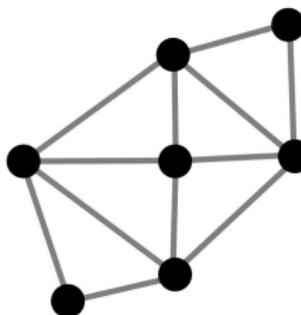
Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .



Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .



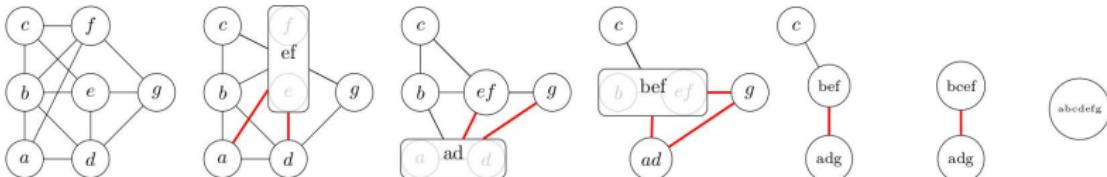
Every planar graph has a coin packing [Koebe–Andreev–Thurston].

Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .

Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

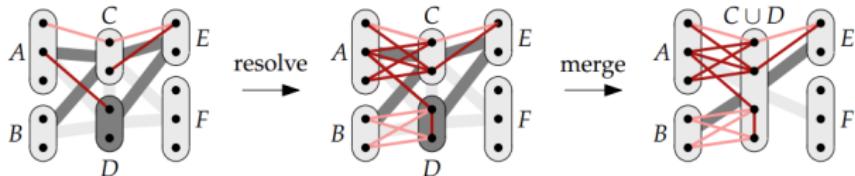
- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose **r -shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .
- For each k , the graphs of **twin-width $\leq k$** .



Introduced by [Bonnet-Kim-Thomassé-Watrigant 2021].

Graph classes with linear neighborhood complexity ($\eta \leq c \cdot m$)

- For each t and q , the fundamental graphs of matroids with no $U_{2,q}$, $M(K_t)$ or $M(K_t)^*$ minor.
- For each t , graphs with no K_t -minor.
- For each t and $f : \mathbb{N} \rightarrow \mathbb{N}$, graphs whose ***r*-shallow-minors** have average degree $\leq f(r)$ for every r .
- For each d , the intersection graphs of sphere packings in \mathbb{R}^d .
- For each k , the graphs of **twin-width** $\leq k$.
- For each k and $f : \mathbb{N} \rightarrow \mathbb{N}$, the graphs of **radius-*r* merge-width** $\leq f(r)$ for every r .

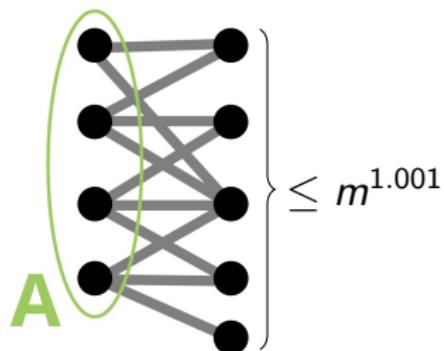


Introduced by [Dreier-Torunczyk 2025], proven by [Bonamy-Geniet 2025].

Theorem (DEMMPT 2024)

If \mathcal{F} is a class such that **first-order logic** cannot define all linear orders from \mathcal{F} , then for any G and any \mathbf{A} of size m ,

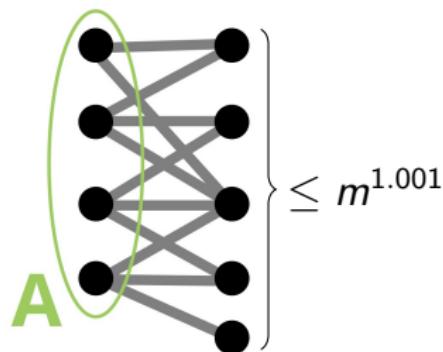
$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq m^{1.001}.$$



Theorem (DEMMPT 2024)

If \mathcal{F} is a class such that **first-order logic** cannot define all linear orders from \mathcal{F} , then for any G and any \mathbf{A} of size m ,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq m^{1.001}.$$



Conjecture (folklore)

The same bound holds if *FO logic* cannot define **all graphs**.

Idea: We only care about graph properties that can be expressed in a certain language.

Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),

Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and

Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

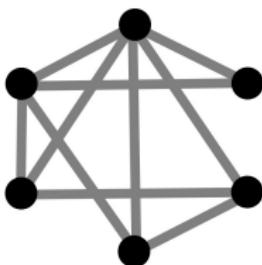
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

The following **sentence** expresses “ G has a universal vertex”:

$$\phi = \exists v \in V : (\forall u \in V : (uEv \vee u = v)).$$



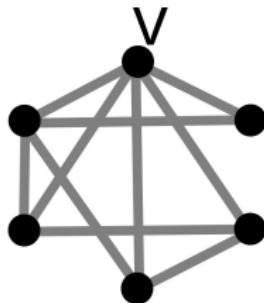
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

The following **sentence** expresses “ G has a universal vertex”:

$$\phi = \exists v \in V : (\forall u \in V : (uEv \vee u = v)).$$



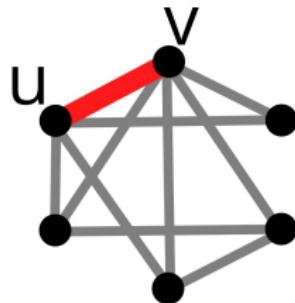
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

The following **sentence** expresses “ G has a universal vertex”:

$$\phi = \exists v \in V : (\forall u \in V : (uEv \vee u = v)).$$



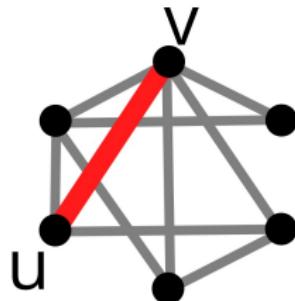
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

The following **sentence** expresses “ G has a universal vertex”:

$$\phi = \exists v \in V : (\forall u \in V : (uEv \vee u = v)).$$



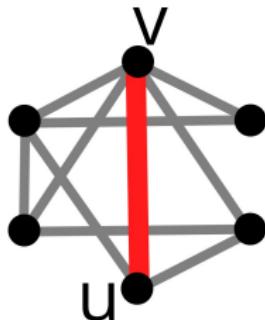
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

The following **sentence** expresses “ G has a universal vertex”:

$$\phi = \exists v \in V : (\forall u \in V : (uEv \vee u = v)).$$



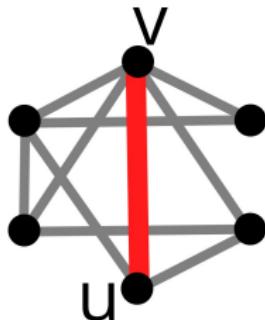
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

The following **sentence** expresses “ G has a universal vertex”:

$$\phi = \exists v \in V : (\forall u \in V : (uEv \vee u = v)).$$



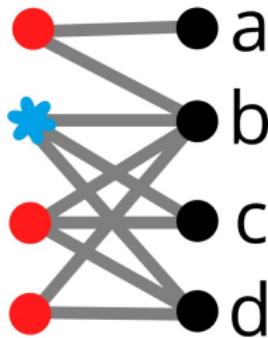
Idea: We only care about graph properties that can be expressed in a certain language.

In **first-order logic**, the language can:

- quantify over vertices ($\exists v \in V, \forall u \in V$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- ask if two vertices are adjacent or equal ($uEv, u = v$).

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

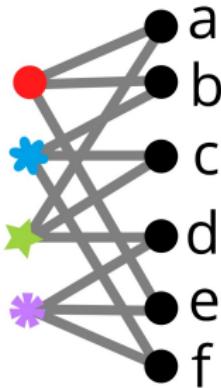
*Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.*



Color so that every non-isolated vertex v has a color which appears an odd number of times in $N(v)$.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

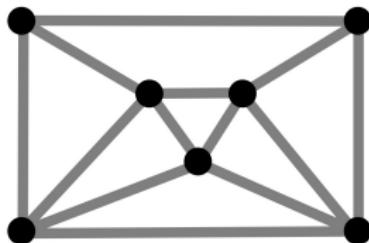
Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.



Color so that every non-isolated vertex v has a color which appears an odd number of times in $N(v)$. If G^1 is the **1-subdivision** of G , then $\chi_{\text{odd}}(G^1) \geq \chi(G)$.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

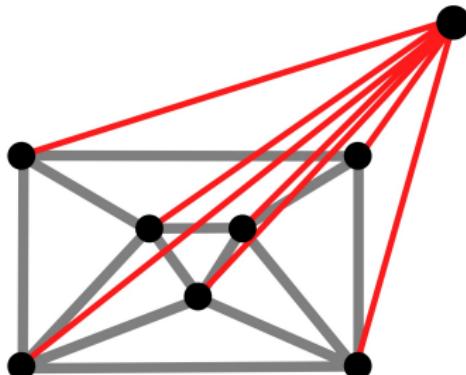
Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.



Color so that every non-isolated vertex v has a color which appears an odd number of times in $N(v)$. If G^1 is the **1-subdivision** of G , then $\chi_{\text{odd}}(G^1) \geq \chi(G)$. Given a planar graph G ,

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

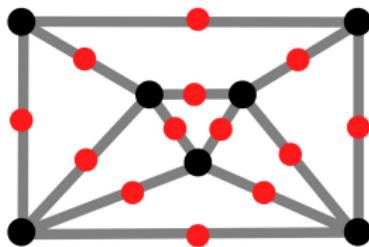
Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.



Color so that every non-isolated vertex v has a color which appears an odd number of times in $N(v)$. If G^1 is the **1-subdivision** of G , then $\chi_{\text{odd}}(G^1) \geq \chi(G)$. Given a planar graph G , add a new vertex adjacent to all others.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

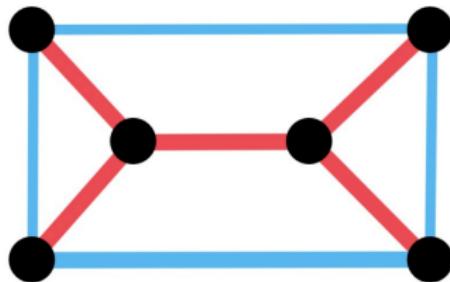
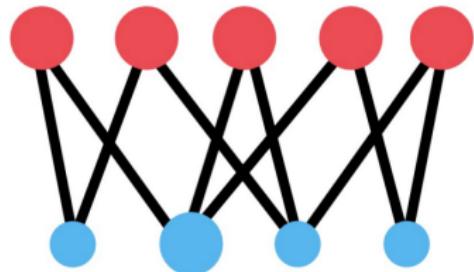
*Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.*



Color so that every non-isolated vertex v has a color which appears an odd number of times in $N(v)$. If G^1 is the **1-subdivision** of G , then $\chi_{\text{odd}}(G^1) \geq \chi(G)$. Given a planar graph G , add a new vertex adjacent to all others. Its fundamental graph equals G^1 .

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

*Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.*



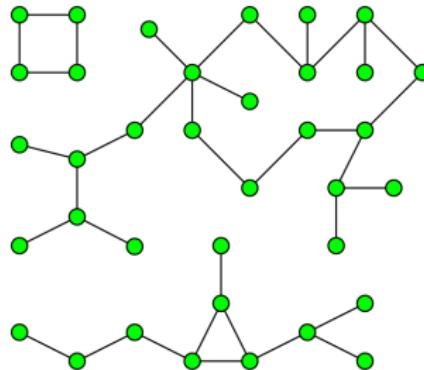
Question (DHKMU)

Does every fundamental graph of a planar graph have $\chi_{\text{odd}} \leq 5$?

Our bound: $\chi_{\text{odd}} \leq 98$.

Theorem (Davies-Hatzel-Knauer-McCarty-Ueckerdt 2025+)

*Any bipartite graph with neighborhood complexity $\leq c \cdot m$ for every m has **odd chromatic number** $\leq f(c)$.*



Conjecture (DHKMU)

Every cosimple matroid of girth $\geq f(t)$ contains at least one of $U_{t,2t}$, $B(K_t)$, $M(K_t)$, and $M(K_t)^$ as a minor.*

Thank you!