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Theorem (“Sparsity”, Ne3etfil & Ossona de Mendez 2012)
The following are equivalent for any graph class F.
1) For each r, F forbids some graph as an r-shallow minor.

A minor is r-shallow if each bag has radius < r.
A class is nowhere dense if it forbids some graph as an
r-shallow minor for each r € N.



Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any graph class F.
1) For each r, F forbids some graph as an r-shallow minor.
2) For each r, Splitter wins the radius-r splitter game on F.

The radius-r splitter game is a pursuit-evasion game where
the “robber” moves < r steps per “cop” deployment.
Splitter wins by catching the robber with < f(r) deployments.



Theorem (Adler & Adler 2014)

The following are equivalent for any subgraph-closed class F.
1) For each r, F forbids some graph as an r-shallow minor.
2) For each r, Splitter wins the radius-r splitter game on F.
3) The class F is stable in the sense of Shelah.
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Roughly, a class F is stable if first-order logic cannot define
all half-graphs H, on F.
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First order logic can:
o quantify over vertices (3v, Vu),
o use logical connectives (A,V,—, = ,...), and
o tell if two vertices are adjacent or equal (uEv,u = v).
To express “G has a dominating vertex”, we can write
¢ = Iv(Vu(uEv V u = v)).
If ¢ is true for G, we say G models ¢ and write G |= ¢.
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A class F is stable if there is no formula ¢(a, b) st for all n,
there is a graph G € F with tuples ay,...,3, and by, ..., b, st
the pairs 3;, bj with G = ¢(a;, b;) form the half-graph H,.
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Monadically stable classes are the same as stable classes,
under the assumption that the class is closed under taking
induced subgraphs (Braunfeld & Laskowski 2022).
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N/

FO model-checking is FPT: Can determine if an n-vertex
G € F satisfies a fixed first-order property ¢ in time O,(n).
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For instance, on the classes above, we can determine if H is a
subgraph of an n-vertex G € F in time Oy(n'001).
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We can do model-checking on half-graphs using twin-width.
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Moral: Analogous items known if we “forbid” a half-graph!
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The following are equivalent for any subgraph-closed class F.
1) For each r, F forbids some graph as an r-shallow minor.

2) For each r, Splitter wins the radius-r splitter game on F.

3) The class F is stable in the sense of Shelah.
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4) FO model-checking is FPT on F. (Given FPT # AW([x].)
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A class F is edge-stable if there exists n so that no G € F
has the half-graph H, induced between its sides X and



Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)
The following are equiv for any hereditary edge-stable F.

- For-each r. F forbids some graph as an r-shallow minor.
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3) The class F is stable in the sense of Shelah.
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A class F is edge-stable if there exists n so that no G € F
has the half-graph H, induced between its sides X and
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3) The class .7-" is stable in the sense of Shelah.
4) FO model-checking is FPT on F. (Given FPT # AW([«].)
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An r-shallow vertex-minor is obtained by, < r times, locally

complementing on an independent set S. This switches
adjacency between u, v ¢ S if |(N(u) N N(v))N S| is odd.
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3) The class .7-" is stable in the sense of Shelah.
4) FO model-checking is FPT on F. (Given FPT # AW([«].)

There is also a characterization by forbidding induced
subgraphs which are “nearly” < r-subdivisions of cliques, or
the line graphs of < r-subdivisions of cliques.



Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)
The following are equiv for any hereditary edge-stable F.

1) For each r, F forbids H¢(;) as r-shallow vertex-minor.
2) For each r, Flipper wins the radius-r Flipper game on F.
3) The class F is stable in the sense of Shelah.

4) FO model-checking is FPT on F. (Given FPT # AW([«].)
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The Flipper game is like the Splitter game, except instead
of deploying cops, the Flipper player can “flip”. To flip, select
X C V(G) and replace G[X] by its complement.
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The radius-r Flipper game is played by two players: Flipper
and Connector. In each round:

1) If at most one vertex remains, then Flipper wins.

2) Else, Connector picks a vertex v and we restrict to the
ball of radius r around v.

3) Then Flipper performs a flip.

Example with r = 2:

Flipper wins on a class F if there exists t = t(r) so that
Flipper wins in < t rounds on each G € F.
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forbidden minor

N
bounded expansion

(shallow minors have bounded average degree)

N
nowhere dense

(have forbidden shallow minors)
1M
monadically stable
(exclude half-graph using first-order logic)
1M
monadically dependent
(exclude any graph using first-order logic)
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< O(n1.0001)
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A hereditary class F is monadically dependent if and only if
first-order model-checking is FPT on F.

Conjecture (folklore; see DEMMPT24)

If F is monadically dependent, then for any G € F and any
set A\ of n vertices in G,

{N(V) N A v e V(G)Y] < O(nt000h),

Theorem (DEMMPT24)
The above bound holds if F is additionally edge-stable.

Conjecture (Ossona de Mendez 2021)

A hereditary class is stable if and only if it can be obtained
from a nowhere dense class “using” first-order logic.



Thank you!



