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Theorem (“Sparsity”, Nešeťril & Ossona de Mendez 2012)

The following are equivalent for any graph class F .

1) For each r , F forbids some graph as an r-shallow minor.

≤ r

A minor is r-shallow if each bag has radius ≤ r .
A class is nowhere dense if it forbids some graph as an

r -shallow minor for each r ∈ N.



Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any graph class F .

1) For each r , F forbids some graph as an r-shallow minor.

2) For each r , Splitter wins the radius-r splitter game on F .

The radius-r splitter game is a pursuit-evasion game where
the “robber” moves ≤ r steps per “cop” deployment.

Splitter wins by catching the robber with ≤ f (r) deployments.



Theorem (Adler & Adler 2014)

The following are equivalent for any subgraph-closed class F .

1) For each r , F forbids some graph as an r-shallow minor.

2) For each r , Splitter wins the radius-r splitter game on F .

3) The class F is stable in the sense of Shelah.

Roughly, a class F is stable if first-order logic cannot define
all half-graphs Hn on F .
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quantify over vertices (∃v ,∀u),
use logical connectives (∧,∨,¬, =⇒ , . . .), and

tell if two vertices are adjacent or equal (uEv , u = v).

To express “G has a dominating vertex”, we can write

ϕ = ∃v(∀u(uEv ∨ u = v)).

If ϕ is true for G , we say G models ϕ and write G |= ϕ.



Theorem (Adler & Adler 2014)

The following are equivalent for any subgraph-closed class F .

1) For each r , F forbids some graph as an r-shallow minor.

2) For each r , Splitter wins the radius-r splitter game on F .

3) The class F is stable in the sense of Shelah.

A class F is stable if there is no formula ϕ(a, b) st for all n,
there is a graph G ∈ F with tuples ā1, . . . , ān and b̄1, . . . , b̄n st
the pairs āi , b̄j with G |= ϕ(āi , b̄j) form the half-graph Hn.



Theorem (Adler & Adler 2014)

The following are equivalent for any subgraph-closed class F .

1) For each r , F forbids some graph as an r-shallow minor.

2) For each r , Splitter wins the radius-r splitter game on F .

3) The class F is stable in the sense of Shelah.

Monadically stable classes are the same as stable classes,
under the assumption that the class is closed under taking

induced subgraphs (Braunfeld & Laskowski 2022).
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FO model-checking is FPT: Can determine if an n-vertex
G ∈ F satisfies a fixed first-order property ϕ in time Oϕ(n

cF ).



Theorem (Grohe, Kreutzer, & Siebertz 2017)
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1) For each r , F forbids some graph as an r-shallow minor.
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4) FO model-checking is FPT on F . (Given FPT ̸= AW [∗].)

For instance, on the classes above, we can determine if H is a
subgraph of an n-vertex G ∈ F in time OH(n

1.0001).
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Moral: Analogous items known if we “forbid” a half-graph!
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The following are equiv for any hereditary edge-stable F .

1) For each r , F forbids Hf (r) as r-shallow vertex-minor.

2) For each r , Splitter wins the radius-r splitter game on F .

3) The class F is stable in the sense of Shelah.

4) FO model-checking is FPT on F . (Given FPT ̸= AW [∗].)

There is also a characterization by forbidding induced
subgraphs which are “nearly” ≤ r -subdivisions of cliques, or

the line graphs of ≤ r -subdivisions of cliques.



Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)

The following are equiv for any hereditary edge-stable F .

1) For each r , F forbids Hf (r) as r-shallow vertex-minor.

2) For each r , Flipper wins the radius-r Flipper game on F .

3) The class F is stable in the sense of Shelah.

4) FO model-checking is FPT on F . (Given FPT ̸= AW [∗].)

The Flipper game is like the Splitter game, except instead
of deploying cops, the Flipper player can “flip”. To flip, select

X ⊆ V (G ) and replace G [X ] by its complement.
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The radius-r Flipper game is played by two players: Flipper
and Connector. In each round:

1) If at most one vertex remains, then Flipper wins.

2) Else, Connector picks a vertex v and we restrict to the
ball of radius r around v .

3) Then Flipper performs a flip.

Flipper wins on a class F if there exists t = t(r) so that
Flipper wins in ≤ t rounds on each G ∈ F .

Example with r = 2:
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A hereditary class F is monadically dependent if and only if
first-order model-checking is FPT on F .

Conjecture (folklore; see DEMMPT24)

If F is monadically dependent, then for any G ∈ F and any
set A of n vertices in G ,

|{N(v) ∩ A : v ∈ V (G )}| ≤ O(n1.0001).

Theorem (DEMMPT24)

The above bound holds if F is additionally edge-stable.

Conjecture (Ossona de Mendez 2021)

A hereditary class is stable if and only if it can be obtained
from a nowhere dense class “using” first-order logic.



Thank you!


