

Monadically stable graph classes

Rose McCarty

School of Math and School of CS

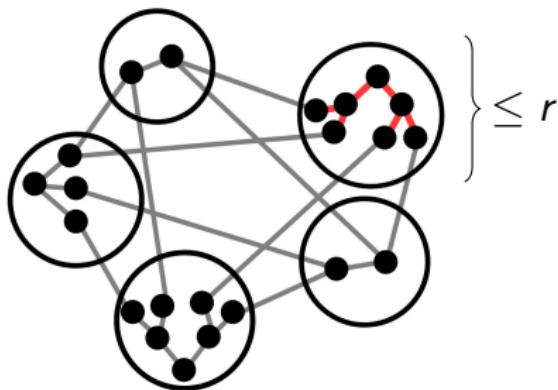
January 7, 2025

Oberwolfach Graph Theory Workshop

Theorem (“Sparsity”, Nešetřil & Ossona de Mendez 2012)

The following are equivalent for any graph class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.



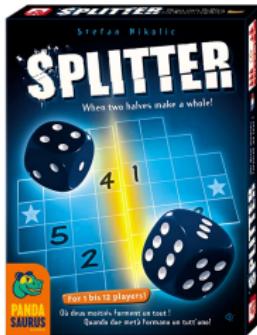
A minor is **r -shallow** if each bag has radius $\leq r$.

A class is **nowhere dense** if it forbids some graph as an r -shallow minor for each $r \in \mathbb{N}$.

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any graph class \mathcal{F} .

- 1) *For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.*
- 2) *For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .*



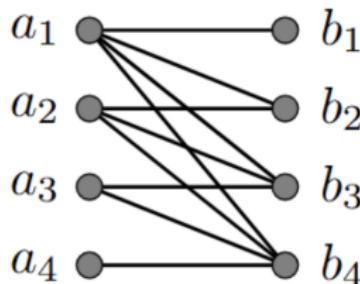
The **radius- r splitter game** is a pursuit-evasion game where the “robber” moves $\leq r$ steps per “cop” deployment.

Splitter wins by catching the robber with $\leq f(r)$ deployments.

Theorem (Adler & Adler 2014)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.



Roughly, a class \mathcal{F} is **stable** if first-order logic cannot define all **half-graphs** H_n on \mathcal{F} .

Theorem (Adler & Adler 2014)

*The following are equivalent for any **subgraph-closed** class \mathcal{F} .*

- 1) *For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.*
- 2) *For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .*
- 3) *The class \mathcal{F} is **stable** in the sense of Shelah.*

First order logic can:

- quantify over vertices ($\exists v, \forall u$),

Theorem (Adler & Adler 2014)

*The following are equivalent for any **subgraph-closed** class \mathcal{F} .*

- 1) *For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.*
- 2) *For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .*
- 3) *The class \mathcal{F} is **stable** in the sense of Shelah.*

First order logic can:

- quantify over vertices ($\exists v, \forall u$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and

Theorem (Adler & Adler 2014)

*The following are equivalent for any **subgraph-closed** class \mathcal{F} .*

- 1) *For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.*
- 2) *For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .*
- 3) *The class \mathcal{F} is **stable** in the sense of Shelah.*

First order logic can:

- quantify over vertices ($\exists v, \forall u$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- tell if two vertices are adjacent or equal ($uEv, u = v$).

Theorem (Adler & Adler 2014)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.

First order logic can:

- quantify over vertices ($\exists v, \forall u$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- tell if two vertices are adjacent or equal ($uEv, u = v$).

To express “ G has a dominating vertex”, we can write

$$\phi = \exists v(\forall u(uEv \vee u = v)).$$

Theorem (Adler & Adler 2014)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.

First order logic can:

- quantify over vertices ($\exists v, \forall u$),
- use logical connectives ($\wedge, \vee, \neg, \implies, \dots$), and
- tell if two vertices are adjacent or equal ($uEv, u = v$).

To express “ G has a dominating vertex”, we can write

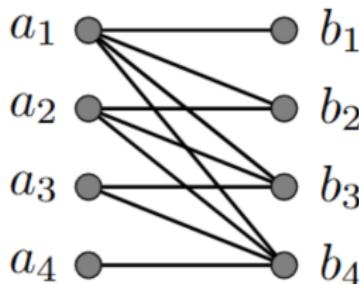
$$\phi = \exists v(\forall u(uEv \vee u = v)).$$

If ϕ is true for G , we say G **models** ϕ and write $G \models \phi$.

Theorem (Adler & Adler 2014)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.

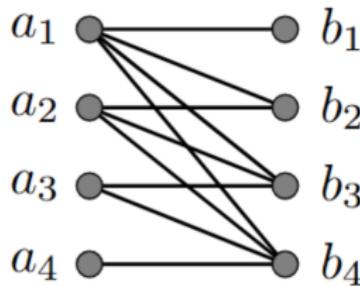


A class \mathcal{F} is **stable** if there is no formula $\phi(a, b)$ st for all n , there is a graph $G \in \mathcal{F}$ with tuples $\bar{a}_1, \dots, \bar{a}_n$ and $\bar{b}_1, \dots, \bar{b}_n$ st the pairs \bar{a}_i, \bar{b}_j with $G \models \phi(\bar{a}_i, \bar{b}_j)$ form the **half-graph** H_n .

Theorem (Adler & Adler 2014)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.

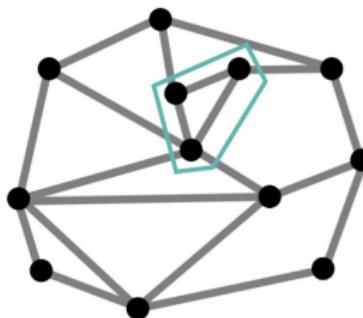


Monadically stable classes are the same as **stable** classes, under the assumption that the class is closed under taking induced subgraphs (Braunfeld & Laskowski 2022).

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)

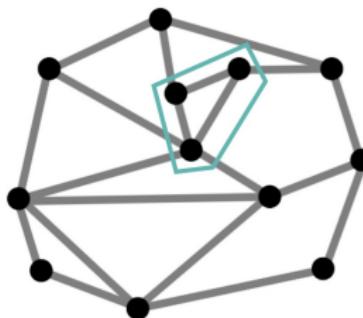


FO model-checking is FPT: Can determine if an n -vertex $G \in \mathcal{F}$ satisfies a fixed first-order property ϕ in time $\mathcal{O}_\phi(n^{c_{\mathcal{F}}})$.

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $\text{FPT} \neq \text{AW}[\ast]$.)



For instance, on the classes above, we can determine if H is a subgraph of an n -vertex $G \in \mathcal{F}$ in time $\mathcal{O}_H(n^{1.0001})$.

Theorem (Grohe, Kreutzer, & Siebertz 2017)

*The following are equivalent for any **subgraph-closed** class \mathcal{F} .*

- 1) *For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.*
- 2) *For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .*
- 3) *The class \mathcal{F} is **stable** in the sense of Shelah.*
- 4) *FO **model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)*

What if we only assume that \mathcal{F} is **hereditary**, that is, closed under taking **induced** subgraphs?

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)

What if we only assume that \mathcal{F} is **hereditary**, that is, closed under taking **induced** subgraphs?

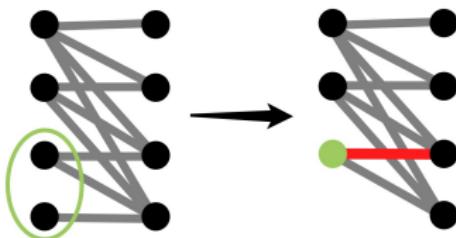
We can do model-checking on half-graphs using **twin-width**.

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)

What if we only assume that \mathcal{F} is **hereditary**, that is, closed under taking **induced** subgraphs?



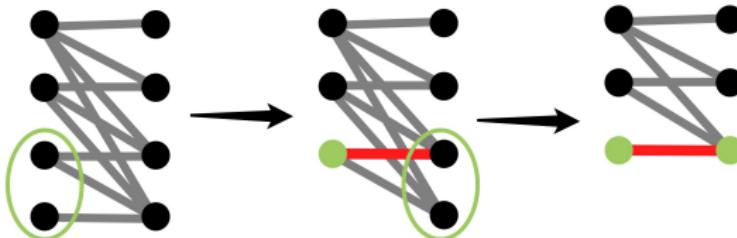
We can do model-checking on half-graphs using **twin-width**.

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*]$).

What if we only assume that \mathcal{F} is **hereditary**, that is, closed under taking **induced** subgraphs?



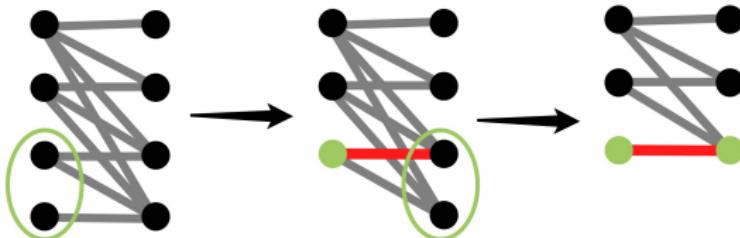
We can do model-checking on half-graphs using **twin-width**.

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*]$).

What if we only assume that \mathcal{F} is **hereditary**, that is, closed under taking **induced** subgraphs?

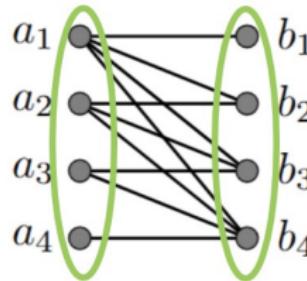


Moral: Analogous items known if we “forbid” a half-graph!

Theorem (Grohe, Kreutzer, & Siebertz 2017)

The following are equivalent for any **subgraph-closed** class \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[\cdot]$.)

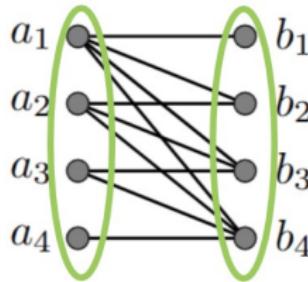


A class \mathcal{F} is **edge-stable** if there exists n so that no $G \in \mathcal{F}$ has the **half-graph** H_n induced between its sides **X** and **Y**.

Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)

The following are equiv for any **hereditary edge-stable** \mathcal{F} .

- 1) For each r , \mathcal{F} forbids some graph as an **r -shallow minor**.
- 2) For each r , **Splitter wins** the radius- r splitter game on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[\cdot]$.)

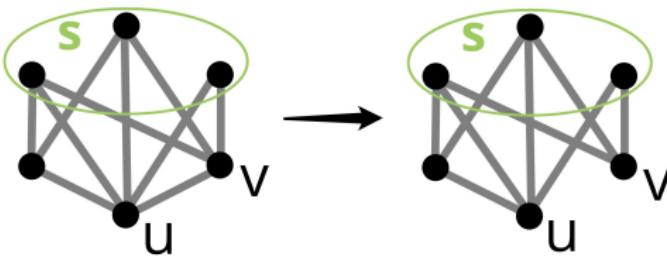


A class \mathcal{F} is **edge-stable** if there exists n so that no $G \in \mathcal{F}$ has the **half-graph** H_n induced between its sides **X** and **Y**.

Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)

The following are equiv for any **hereditary edge-stable** \mathcal{F} .

- 1) For each r , \mathcal{F} forbids $H_{f(r)}$ as **r -shallow vertex-minor**.
- 2) For each r , **Splitter wins the radius- r splitter game on \mathcal{F}** .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)

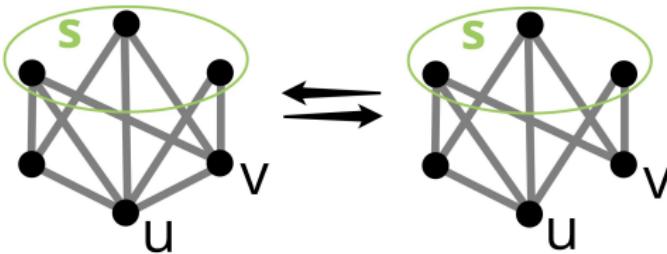


An **r -shallow vertex-minor** is obtained by, $\leq r$ times, **locally complementing** on an independent set S . This switches adjacency between $u, v \notin S$ if $|(N(u) \cap N(v)) \cap S|$ is odd.

Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)

The following are equiv for any **hereditary edge-stable** \mathcal{F} .

- 1) For each r , \mathcal{F} forbids $H_{f(r)}$ as **r -shallow vertex-minor**.
- 2) For each r , **Splitter wins the radius- r splitter game on \mathcal{F}** .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)

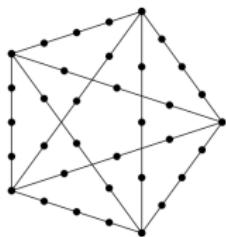
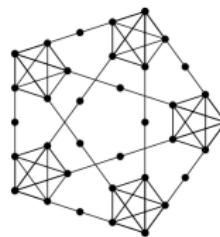


An **r -shallow vertex-minor** is obtained by, $\leq r$ times, **locally complementing** on an independent set S . This switches adjacency between $u, v \notin S$ if $|(N(u) \cap N(v)) \cap S|$ is odd.

Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)

The following are equiv for any **hereditary edge-stable** \mathcal{F} .

- 1) For each r , \mathcal{F} forbids $H_{f(r)}$ as **r -shallow vertex-minor**.
- 2) For each r , **Splitter wins the radius- r splitter game on \mathcal{F}** .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)

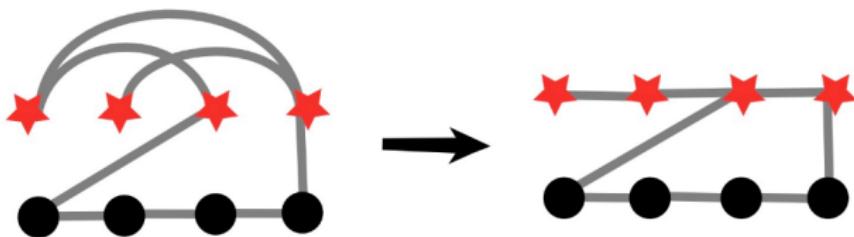


There is also a characterization by forbidding **induced subgraphs** which are “nearly” $\leq r$ -subdivisions of cliques, or the line graphs of $\leq r$ -subdivisions of cliques.

Theorem (GMMOPPSST23, DMS23, DEMMPT24, BKO24+)

The following are equiv for any **hereditary edge-stable** \mathcal{F} .

- 1) For each r , \mathcal{F} forbids $H_{f(r)}$ as **r -shallow vertex-minor**.
- 2) For each r , **Flipper wins** the radius- r **Flipper game** on \mathcal{F} .
- 3) The class \mathcal{F} is **stable** in the sense of Shelah.
- 4) **FO model-checking is FPT** on \mathcal{F} . (Given $FPT \neq AW[*$].)



The **Flipper game** is like the Splitter game, except instead of deploying cops, the Flipper player can “flip”. To **flip**, select $X \subseteq V(G)$ and replace $G[X]$ by its complement.

The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.

The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .

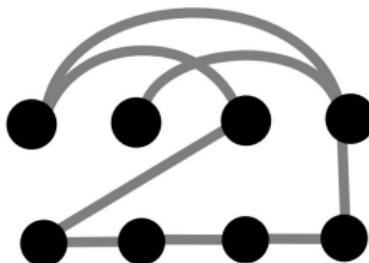
The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

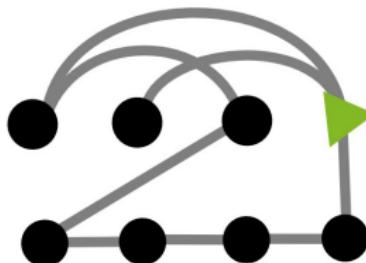
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

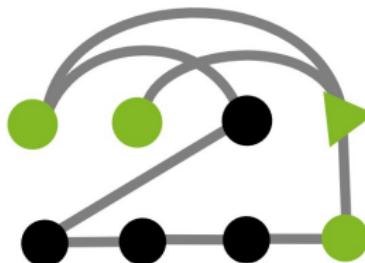
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

Example with $r = 2$:

The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

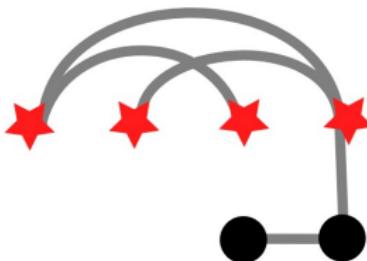
- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

Example with $r = 2$:

The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

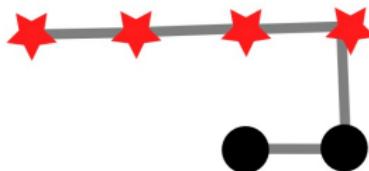
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

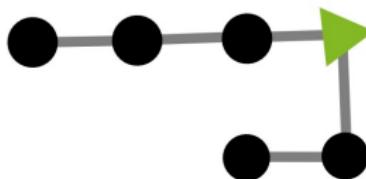
Example with $r = 2$:



The **radius- r Fliper game** is played by two players: Fliper and Connector. In each round:

- 1) If at most one vertex remains, then Fliper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Fliper performs a flip.

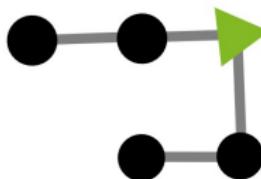
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

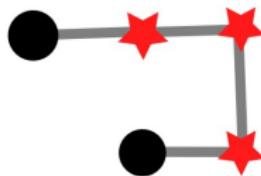
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

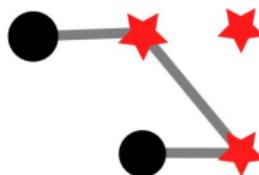
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

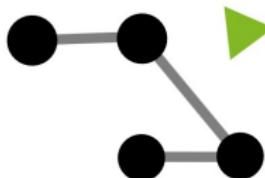
Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

Example with $r = 2$:



The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

Example with $r = 2$:

The **radius- r Flipper game** is played by two players: Flipper and Connector. In each round:

- 1) If at most one vertex remains, then Flipper wins.
- 2) Else, Connector picks a vertex v and we restrict to the ball of radius r around v .
- 3) Then Flipper performs a flip.

Example with $r = 2$:

Flipper **wins** on a class \mathcal{F} if there exists $t = t(r)$ so that Flipper wins in $\leq t$ rounds on each $G \in \mathcal{F}$.

forbidden minor

∩

bounded expansion

(shallow minors have bounded average degree)

∩

nowhere dense

(have forbidden shallow minors)

∩

monadically stable

(exclude half-graph using first-order logic)

∩

monadically dependent

(exclude *any* graph using first-order logic)

forbidden minor

∩

bounded expansion

(shallow minors have bounded average degree)

∩

nowhere dense

(have forbidden shallow minors)

∩

monadically stable

(exclude half-graph using first-order logic)

∩

monadically dependent

(exclude *any* graph using first-order logic)

forbidden minor

\cap

bounded expansion

(shallow minors have bounded average degree)

\cap

nowhere dense

(have forbidden shallow minors)

\cap

monadically stable

(exclude half-graph using first-order logic)

\cap

monadically dependent

(exclude *any* graph using first-order logic)

forbidden minor

\cap

bounded expansion

(shallow minors have bounded average degree)

\cap

nowhere dense

(have forbidden shallow minors)

\cap

monadically stable

(exclude half-graph using first-order logic)

\cap

monadically dependent

(exclude *any* graph using first-order logic)

forbidden minor

\cap

bounded expansion

(shallow minors have bounded average degree)

\cap

nowhere dense

(have forbidden shallow minors)

\cap

monadically stable

(exclude half-graph using first-order logic)

\cap

monadically dependent

(exclude *any graph* using first-order logic)

Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk)

*A hereditary class \mathcal{F} is **monadically dependent** if and only if first-order model-checking is FPT on \mathcal{F} .*

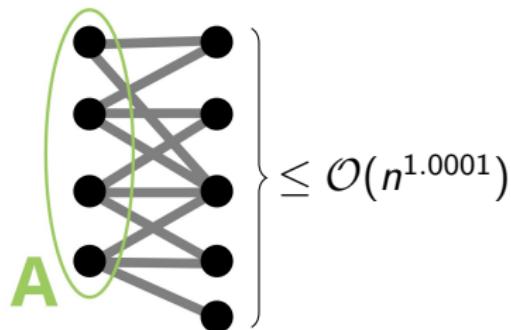
Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk)

A hereditary class \mathcal{F} is **monadically dependent** if and only if first-order model-checking is FPT on \mathcal{F} .

Conjecture (folklore; see DEMMPT24)

If \mathcal{F} is monadically dependent, then for any $G \in \mathcal{F}$ and any set \mathbf{A} of n vertices in G ,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq \mathcal{O}(n^{1.0001}).$$



Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk)

*A hereditary class \mathcal{F} is **monadically dependent** if and only if first-order model-checking is FPT on \mathcal{F} .*

Conjecture (folklore; see DEMMPT24)

If \mathcal{F} is monadically dependent, then for any $G \in \mathcal{F}$ and any set $\textcolor{brown}{A}$ of n vertices in G ,

$$|\{N(v) \cap \textcolor{brown}{A} : v \in V(G)\}| \leq \mathcal{O}(n^{1.0001}).$$

Theorem (DEMMPT24)

*The above bound holds if \mathcal{F} is additionally **edge-stable**.*

Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk)

*A hereditary class \mathcal{F} is **monadically dependent** if and only if first-order model-checking is FPT on \mathcal{F} .*

Conjecture (folklore; see DEMMPT24)

If \mathcal{F} is monadically dependent, then for any $G \in \mathcal{F}$ and any set \mathbf{A} of n vertices in G ,

$$|\{N(v) \cap \mathbf{A} : v \in V(G)\}| \leq \mathcal{O}(n^{1.0001}).$$

Theorem (DEMMPT24)

*The above bound holds if \mathcal{F} is additionally **edge-stable**.*

Conjecture (Ossona de Mendez 2021)

*A hereditary class is **stable** if and only if it can be obtained from a **nowhere dense** class “using” first-order logic.*

Thank you!