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Idea: We only care about graph properties that can be
expressed in a certain language.
In first-order logic, the language can:

e quantify over vertices (Iv € V,Vu € V),

o use logical connectives (A,V,—, = ,...), and

o ask if two vertices are adjacent or equal (uEv,u = v).

The following sentence expresses “G has a universal vertex”:
p=3IveV:NueV:(uEvVu=yv)).

If ¢ is true for G, we write G |= ¢ and say G models ¢.



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle

G =(V,E)



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V...
first-order

G =(V,E)



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V... AX, Y C V...
first-order MSO;

G =(V,E)



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V... AX, Y C V... JFCE...
first-order MSO, MSO,

G =(V,E)



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V... AX, Y C V... JFCE...
first-order MSO, MSO,

Lemma: There is no MSO; sentence ¢n,,n which expresses
“G contains a Hamiltonian cycle”.



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V... AX, Y C V... JFCE...
first-order MSO, MSO,

Lemma: There is no first-order sentence ¢,4q Which
expresses “G contains an odd cycle”.



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V... AX, Y C V... JFCE...
first-order MSO, MSO,

expressive power

~



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle
da,b,ce V... AX, Y C V... JFCE...
first-order MSO; MSO,

expressive power

~

AN

computational tractability



Graph Properties

contains contains contains
triangle odd cycle Hamiltonian
cycle

da,b,ce V... AX, Y C V...
first-order MSO,
expressive power

AN

computational tractability



Graph Properties

contains is contains
triangle 3-colorable Hamiltonian
cycle

da,b,ce V... X, Y, ZC V...
first-order MSO,
expressive power

AN

computational tractability



Graph Properties

contains contains
triangle 3- coIorabIe Hamiltonian
;gi cycle
da,b,ce V... X, Y, ZC V...
first-order MSO,

expressive power

AN

computational tractability



Does G |= ¢?



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Ny

£\



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).
N

£\



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

d



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

d




Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).




Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Naive takes
time O(nd).




Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Matrix
multiplication
gives O(n*372).

Naive takes
time O(nd).




Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Naive takes muII‘E?SIESaXtion
time O(nd).
' (n°) gives O(n*3"2).

Theorem (Dvotdk, Krél', Thomas 2011)

Can check for triangles in time O(n) if G is planar.



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Naive takes muII‘E?SIESaXtion
time O(nd).
' (n°) gives O(n*3"2).

Theorem (Dvotdk, Krél', Thomas 2011)

For each first-order ¢, can do in time Oy(n) if G is planar.



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Naive takes mult?s&gaxtion
time O(nd).
' (n°) gives O(n*3"2).

Efficient: dd s.t. we can check whether an n-vertex G € F
models an FO sentence ¢ in time O,(n9).



Does G |= ¢?

Consider ¢ = da3b3c(aEb A aEc A bEc).

Naive takes muII‘E?SIESaXtion
time O(nd).
' (n°) gives O(n*3"2).

Efficient: dd s.t. we can check whether an n-vertex G € F
models an FO sentence ¢ in time O,(n9).

i.e. Oy(n°)
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From now on we assume F is closed under vertex-deletion.

Conjecture (folklore)

A class F admits an efficient algorithm if and only if it has
good model-theoretic properties in the sense of Shelah.

1) True if the class is sparse (i.e. has o(n?) edges).
a) (Dvorak, Kral' & Thomas 2011) proved hardness.
b) (Adler & Adler 2014) found the connection to model theory.
c) (Grohe, Kreutzer & Siebertz 2017) found the algorithm.

2) True if the class is edge-stable.

a) (Gajarsky, Mahlmann, McCarty, Ohlmann, Pilipczuk,
Przybyszewski, Siebertz, Sokotowski & Toruriczyk 2023) proved
an equivalent characterization via a combinatorial game.

b) (Dreier, Mdhlmann & Siebertz 2023) found the algorithm.

c) (Dreier, Eleftheriadis, Mahlmann, McCarty, Pilipczuk &
Toruriczyk 2024) proved hardness and the missing link.
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Theorem (GMMOPPSST 2023)

A class of graphs is stable if and only if Flipper wins the
radius-r flipper game for each r € N.

Two player game: Flipper and Connector. In each round:
1) If |[V(G)| =1 then Flipper wins in that round.
2) Else, Connector picks a vertex v and we restrict to B,(v).
3) Then Flipper performs a flip.

Flipper wins the game on a class F if there exists t = t(r)
so that Flipper wins in < t rounds on each G € F.
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Next:

1) What are “good model-theoretic properties”?
2) The key ingredients to the algorithm.

a) The flipper game.

b) Locality, pruning, and LP rounding.

c) Small neighborhood complexity.
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If F is stable, then for any G € F and any set " of n vertices,
{N(v v e V(G)}| < nt00h

< n1.001

AAA

e

Conjecture (folklore)

The same bound holds if F is dependent.

Conjecture (Ossona de Mendez 2021)

Every stable class is interdefinable with a sparse class.



Thank you!



