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Idea: We only care about graph properties that can be
expressed in a certain language.

In first-order logic, the language can:

quantify over vertices (∃v ∈ V ,∀u ∈ V ),

use logical connectives (∧,∨,¬, =⇒ , . . .), and

ask if two vertices are adjacent or equal (uEv , u = v).

The following sentence expresses “G has a universal vertex”:

ϕ = ∃v ∈ V : (∀u ∈ V : (uEv ∨ u = v)).

If ϕ is true for G , we write G |= ϕ and say G models ϕ.
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Does G |= ϕ?

Consider ϕ = ∃a∃b∃c(aEb ∧ aEc ∧ bEc).

Naive takes
time O(n3).

Matrix
multiplication
gives O(n2.372).

Efficient: ∃d s.t. we can check whether an n-vertex G ∈ F
models an FO sentence ϕ in time Oϕ(n

d).

i.e. Oϕ(n
6)
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From now on we assume F is closed under vertex-deletion.

Conjecture (folklore)

A class F admits an efficient algorithm if and only if it has
good model-theoretic properties in the sense of Shelah.

1) True if the class is sparse (i.e. has o(n2) edges).
a) (Dvǒrák, Král’ & Thomas 2011) proved hardness.
b) (Adler & Adler 2014) found the connection to model theory.
c) (Grohe, Kreutzer & Siebertz 2017) found the algorithm.

2) True if the class is edge-stable.
a) (Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk,

Przybyszewski, Siebertz, Soko lowski & Toruńczyk 2023) proved
an equivalent characterization via a combinatorial game.

b) (Dreier, Mählmann & Siebertz 2023) found the algorithm.
c) (Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk &

Toruńczyk 2024) proved hardness and the missing link.
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2) The key ingredients to the algorithm.

a) The flipper game.
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Theorem (GMMOPPSST 2023)

A class of graphs is stable if and only if Flipper wins the
radius-r flipper game for each r ∈ N.

Two player game: Flipper and Connector. In each round:

1) If |V (G )| = 1 then Flipper wins in that round.

2) Else, Connector picks a vertex v and we restrict to Br (v).

3) Then Flipper performs a flip.

Flipper wins the game on a class F if there exists t = t(r)
so that Flipper wins in ≤ t rounds on each G ∈ F .
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Next:

1) What are “good model-theoretic properties”?

2) The key ingredients to the algorithm.

a) The flipper game.
b) Locality, pruning, and LP rounding.
c) Small neighborhood complexity.
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Theorem (DEMMPT 2024)

If F is stable, then for any G ∈ F and any set A of n vertices,

|{N(v) ∩ A : v ∈ V (G )}| ≤ n1.001.

≤ n1.001

Conjecture (folklore)

The same bound holds if F is dependent.

Conjecture (Ossona de Mendez 2021)

Every stable class is interdefinable with a sparse class.



Thank you!


