

# Graph theory tutorial

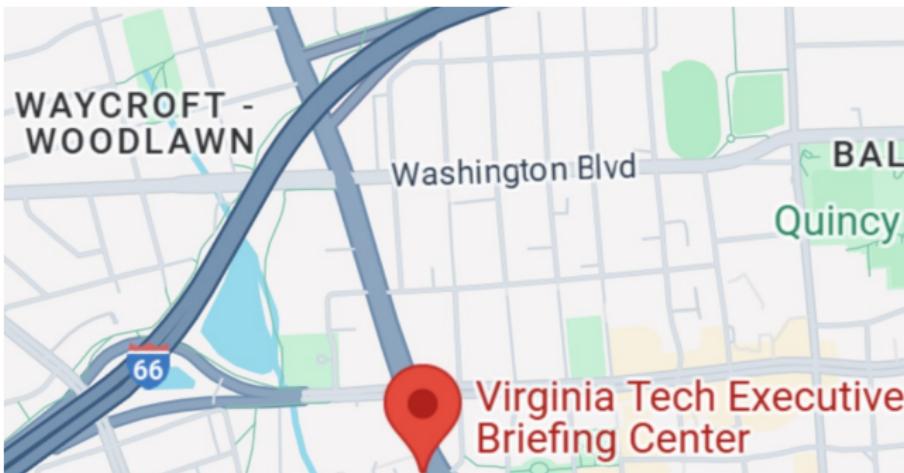
Rose McCarty

School of Math and School of Computer Science

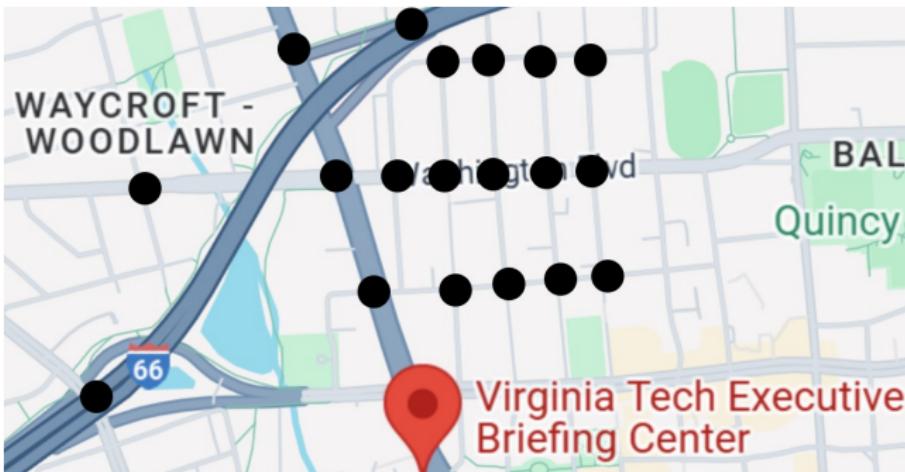


May 28, 2025

# Classical graph theory

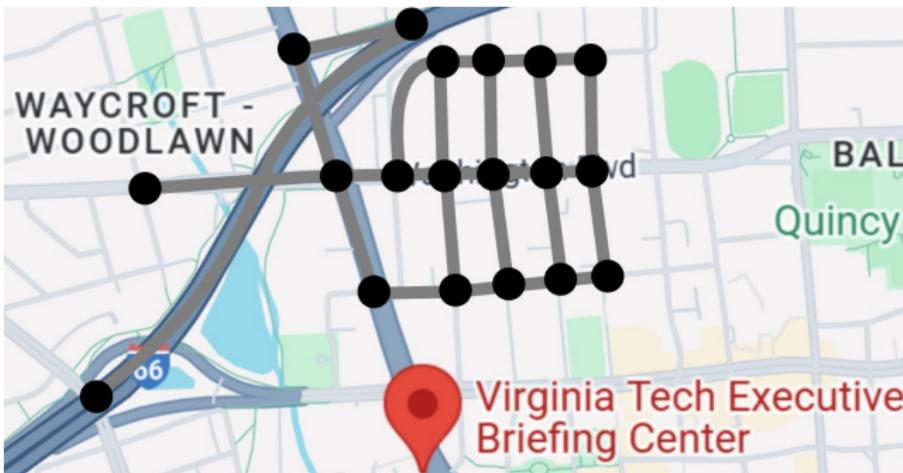


# Classical graph theory



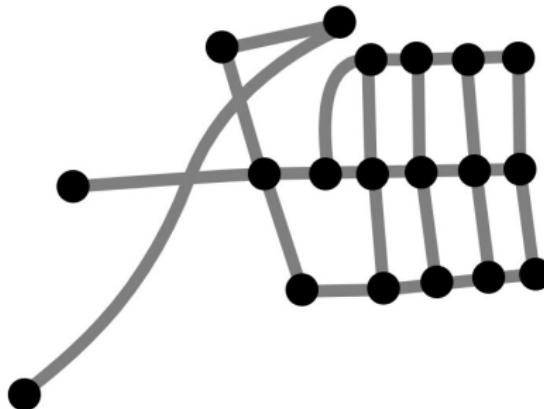
Vertices  $V$

# Classical graph theory



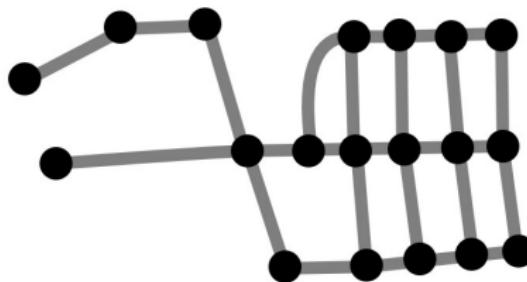
Vertices  $V$   
Edges  $E$

# Classical graph theory



Vertices **V**  
Edges **E**  
Graph  $G = (V, E)$

# Classical graph theory

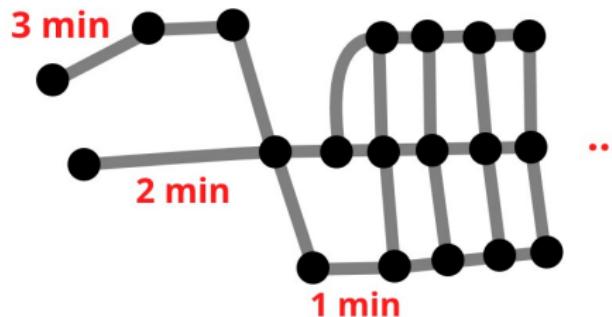


Vertices **V**

Edges **E**

Graph  $G = (V, E)$

# Classical graph theory



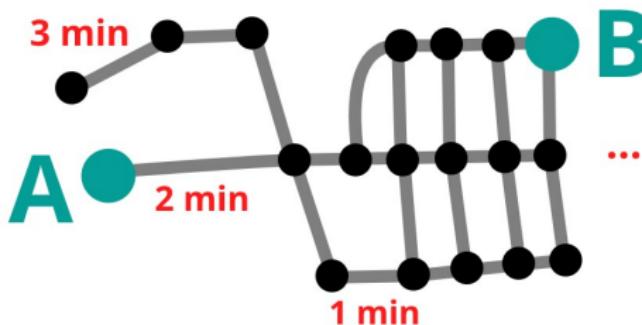
Vertices  $V$

Edges  $E$

Graph  $G = (V, E)$

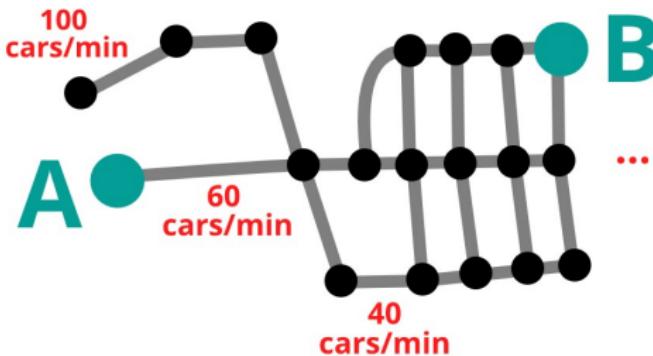
Edge-weights  $w : E \rightarrow \mathbb{R}_{\geq 0}$

# Classical graph theory



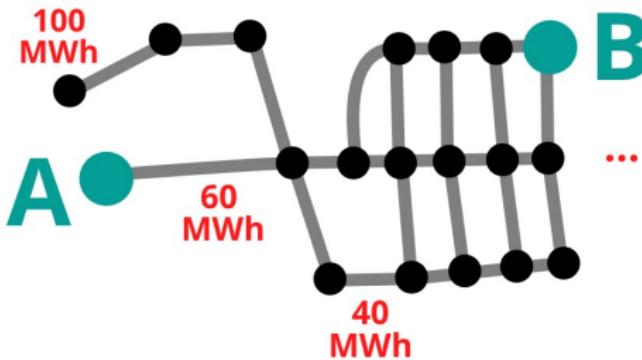
What is the fastest route from **A** to **B**?

# Classical graph theory



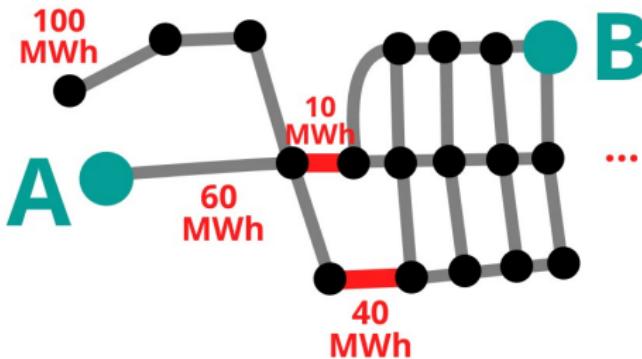
What is the fastest route from **A** to **B**?  
How many cars can go from **A** to **B** without traffic?

## Classical graph theory



What is the fastest route from **A** to **B**?  
How much electricity can **A** send to **B**?

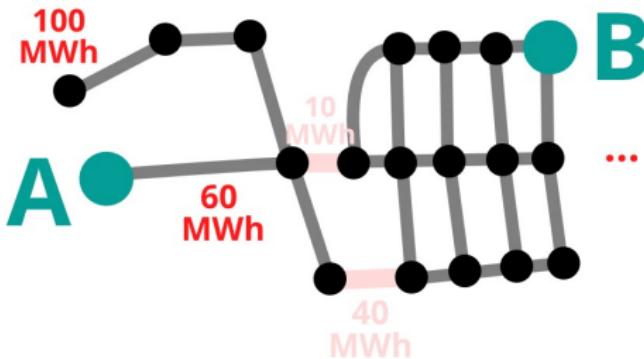
# Classical graph theory



**Theorem:**  
max-flow  
=  
min-cut

What is the fastest route from **A** to **B**?  
How much electricity can **A** send to **B**?

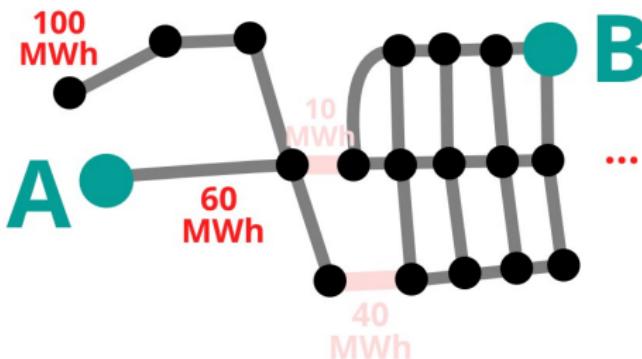
# Classical graph theory



**Theorem:**  
max-flow  
=  
min-cut

What is the fastest route from **A** to **B**?  
How much electricity can **A** send to **B**?

## Classical graph theory

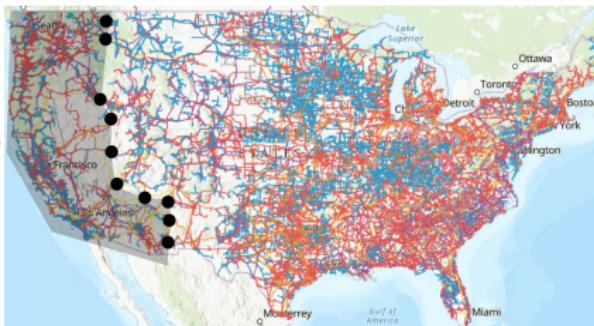


**Theorem:**  
max-flow  
=  
min-cut

What is the fastest route from **A** to **B**?  
How much electricity can **A** send to **B**?  
Where is the power grid the most vulnerable?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



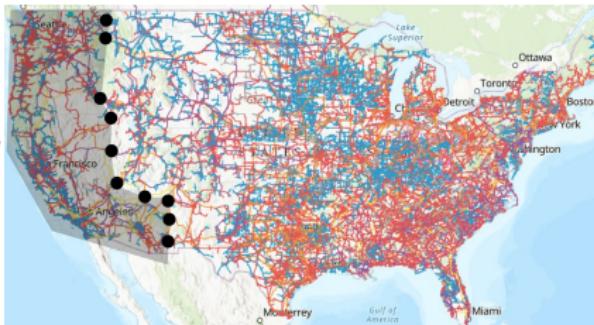
What is the fastest route from **A** to **B**?

How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



What is the fastest route from **A** to **B**?

How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



What is the fastest route from **A** to **B**?

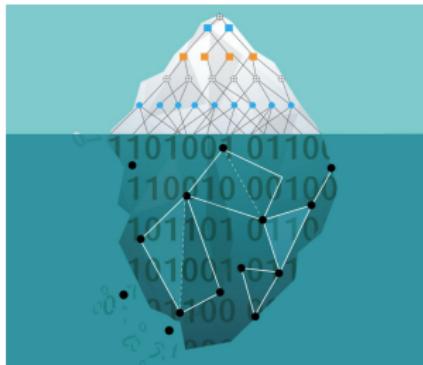
How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



error correction,  
pseudorandomness,  
hash functions,  
Markov chains

What is the fastest route from **A** to **B**?

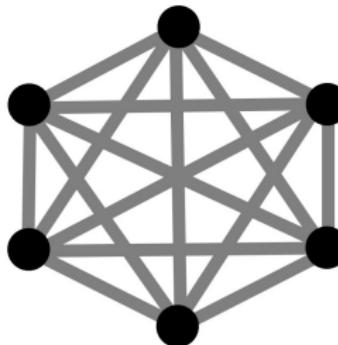
How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



A **clique** is the best expander.

What is the fastest route from **A** to **B**?

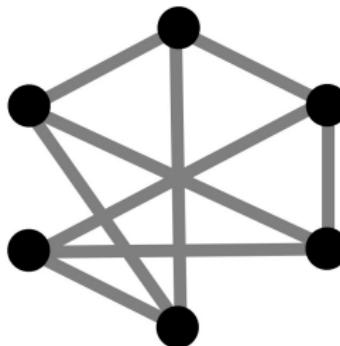
How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

## Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



We understand optimal expanders where each vertex is incident to  $k$  edges.

What is the fastest route from **A** to **B**?

How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



**Theorem [LT]:**  
Road networks without bridges are bad expanders.

What is the fastest route from **A** to **B**?

How much electricity can **A** send to **B**?

Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

# Classical graph theory

A graph is a **bad expander** if deleting a few vertices/edges can disconnect a huge part.



**Theorem [LT]:**  
Road networks without bridges are bad expanders.

What is the fastest route from **A** to **B**?

How much electricity can **A** send to **B**?

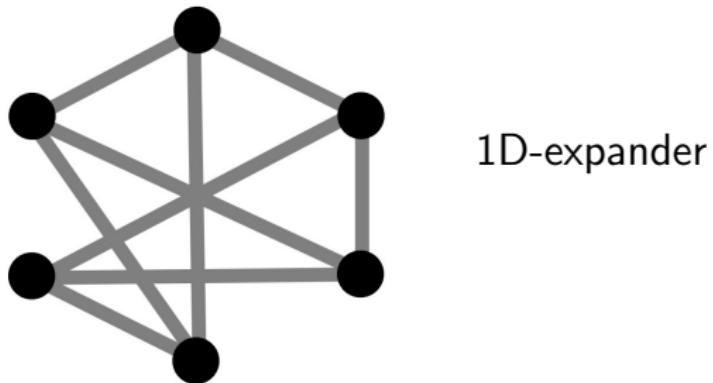
Where is the power grid the most vulnerable?

How can we design robust networks (ie **good expanders**)?

**Keywords:**

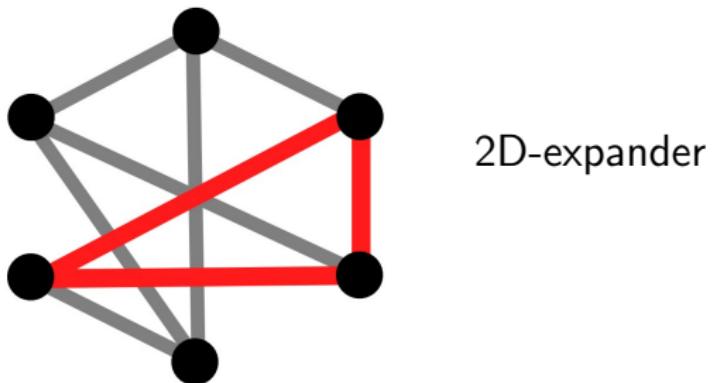
connectivity, separators, submodularity, linear programming

# Modern trends in graph theory



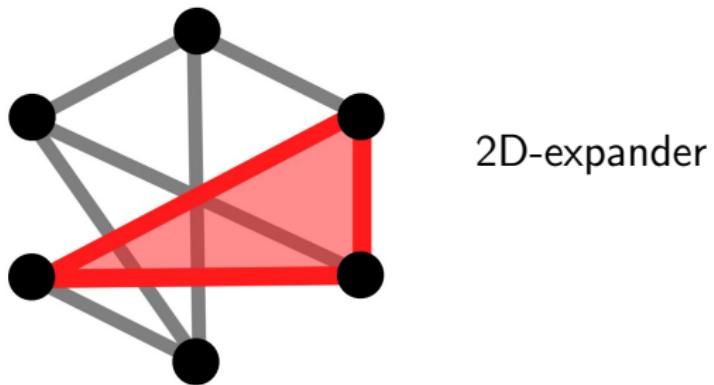
How can we design **high-dimensional** expanders?

# Modern trends in graph theory



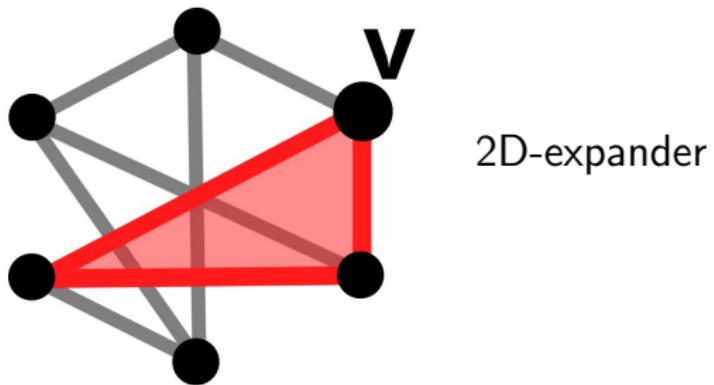
How can we design **high-dimensional** expanders?

# Modern trends in graph theory



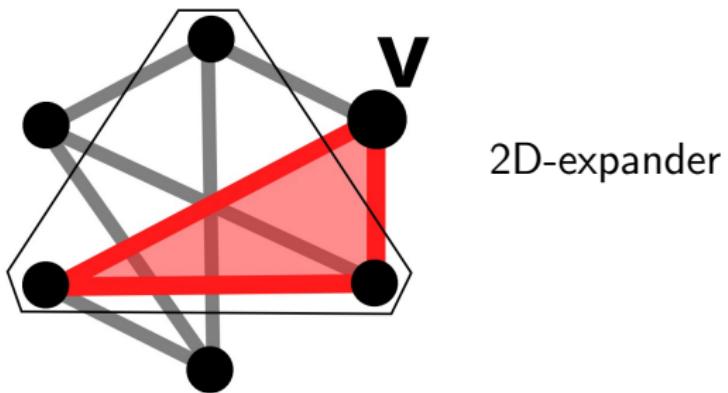
How can we design **high-dimensional** expanders?

# Modern trends in graph theory



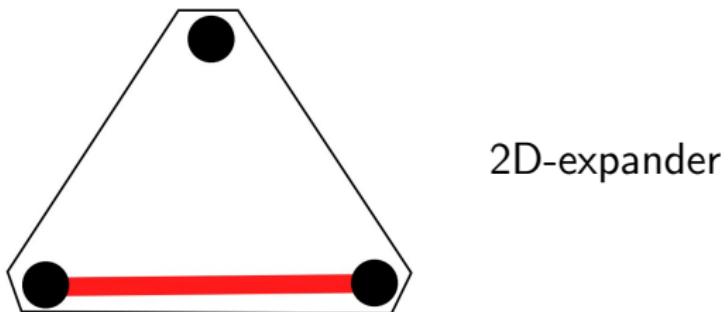
How can we design **high-dimensional** expanders?

# Modern trends in graph theory



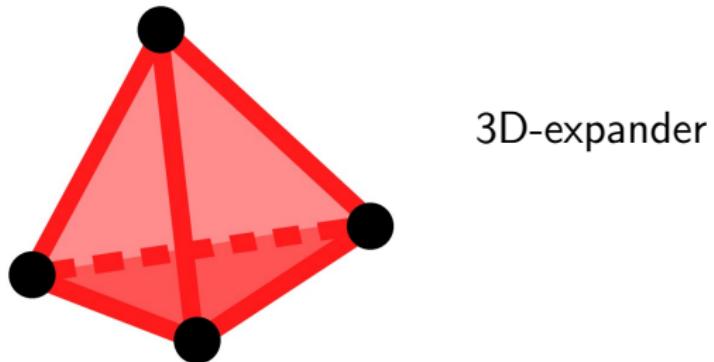
How can we design **high-dimensional** expanders?

# Modern trends in graph theory



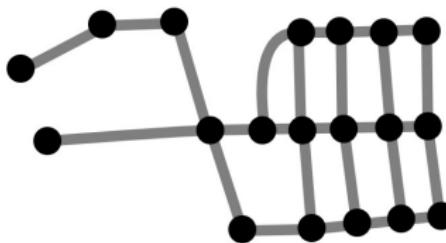
How can we design **high-dimensional** expanders?

# Modern trends in graph theory



How can we design **high-dimensional** expanders?

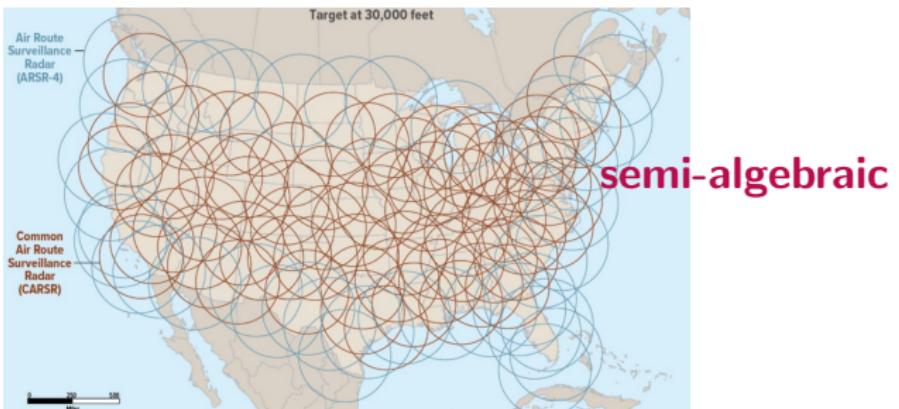
# Modern trends in graph theory



planar

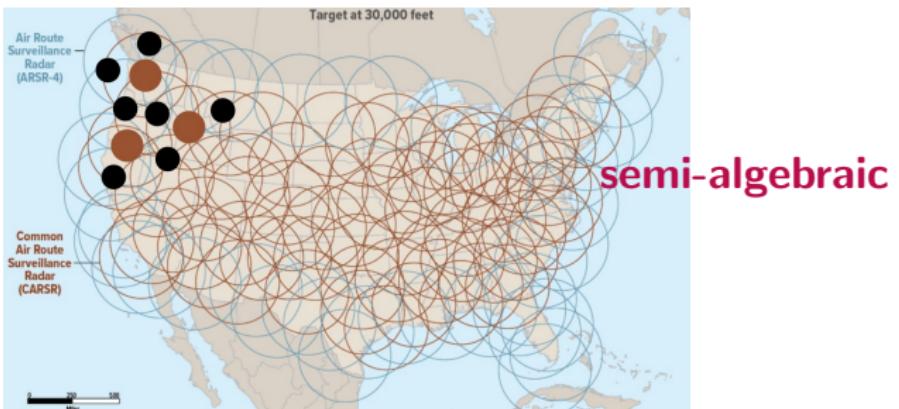
How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

# Modern trends in graph theory



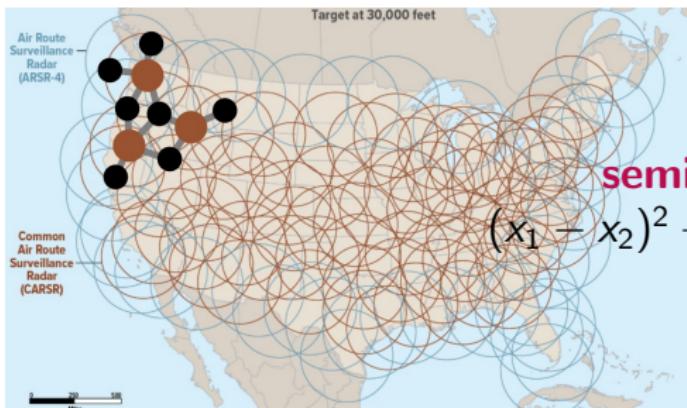
How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

# Modern trends in graph theory



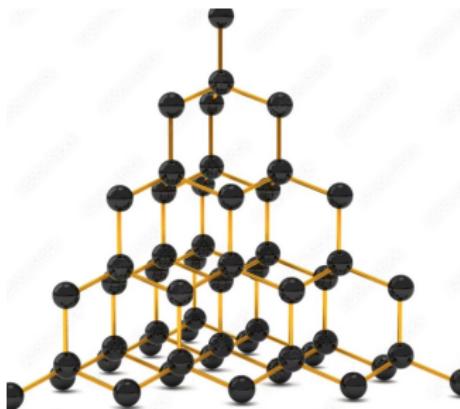
How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

# Modern trends in graph theory



How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

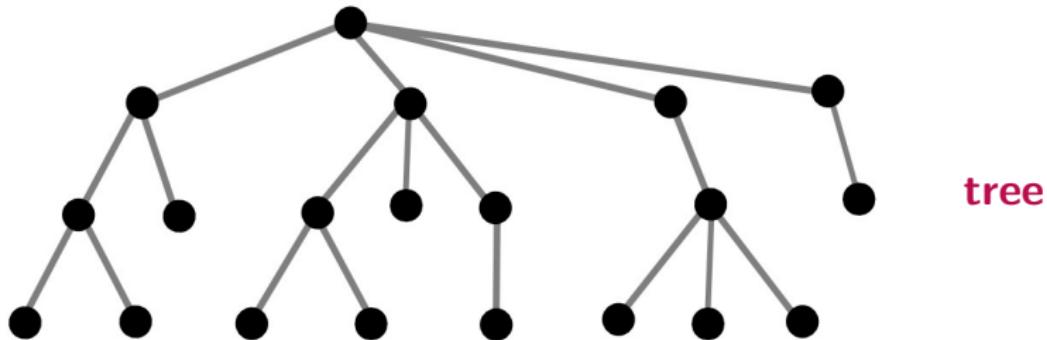
# Modern trends in graph theory



**lattice**  
(diamond)

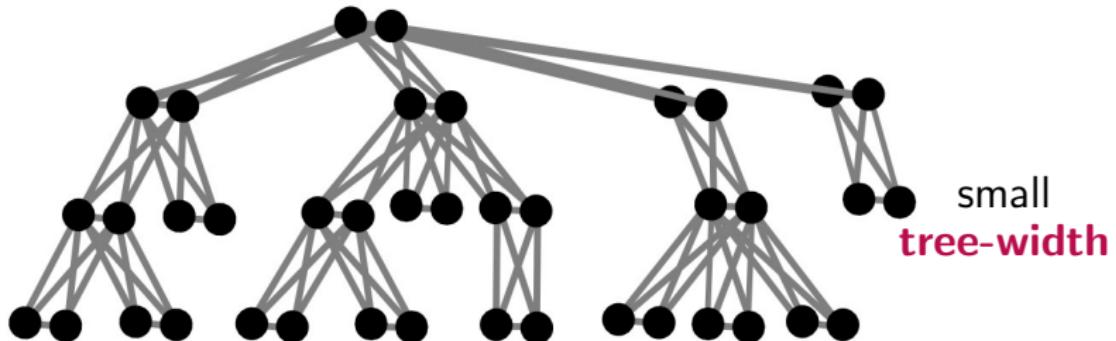
How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

# Modern trends in graph theory



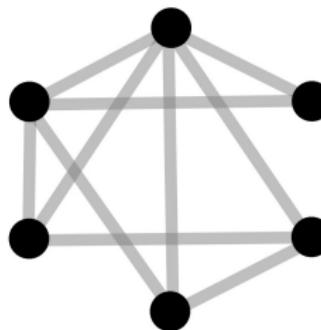
How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

# Modern trends in graph theory



How can we design **high-dimensional** expanders?  
How can we determine and utilize **structural** properties?

# Modern trends in graph theory



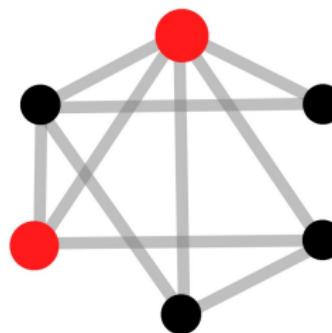
query complexity

How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

# Modern trends in graph theory

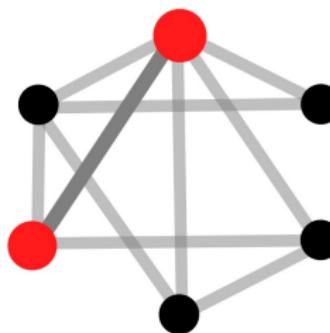


How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

# Modern trends in graph theory



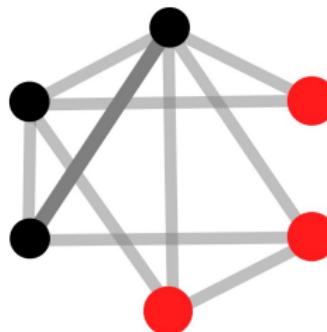
query complexity

How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

# Modern trends in graph theory



query complexity

How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

# Modern trends in graph theory

$$\begin{array}{c} U_1 \ U_2 \ U_3 \\ \hline M_1 & 1 & 0 & 1 \\ M_2 & 1 & 0 & 1 \\ M_3 & 0 & 1 & 1 \\ M_4 & 0 & 1 & ? \end{array}$$

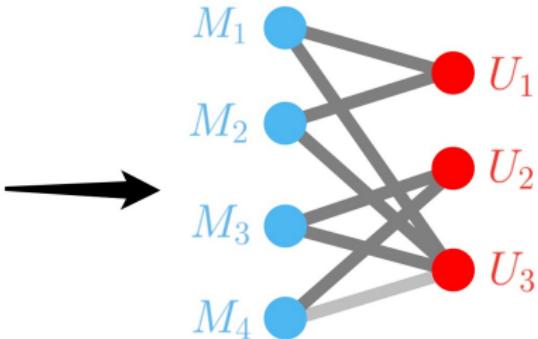
How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

# Modern trends in graph theory

$$\begin{matrix} & U_1 & U_2 & U_3 \\ \begin{matrix} M_1 \\ M_2 \\ M_3 \\ M_4 \end{matrix} & \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & ? \end{bmatrix} \end{matrix}$$



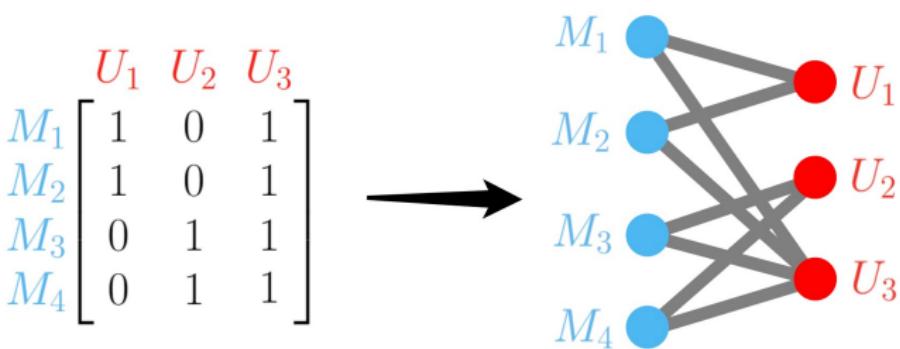
How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

What if we care about the rank of **matrices**?

# Modern trends in graph theory



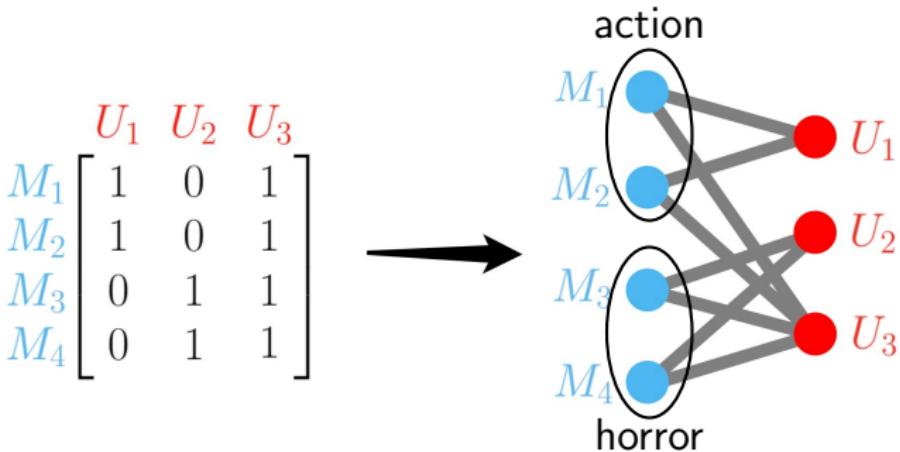
How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

What if we care about the rank of **matrices**?

# Modern trends in graph theory



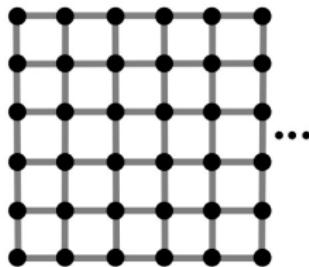
How can we design **high-dimensional** expanders?

How can we determine and utilize **structural** properties?

Can **quantum computing** speed up classical graph problems?

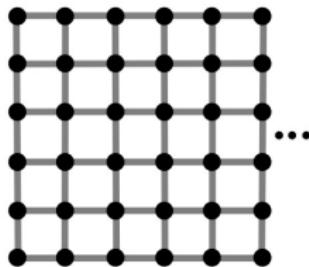
What if we care about the rank of **matrices**?

# A graph-based model of quantum computing



(Raussendorf & Briegel 2001)

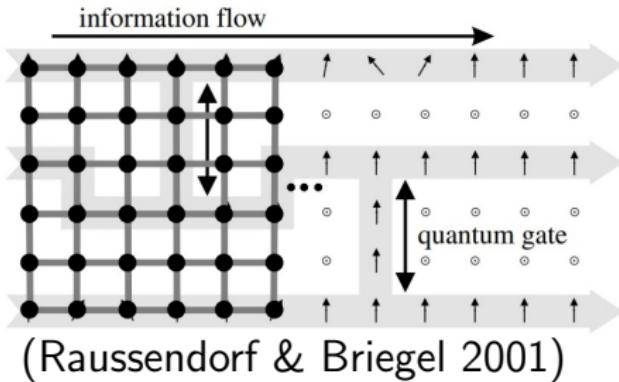
# A graph-based model of quantum computing



(Raussendorf & Briegel 2001)

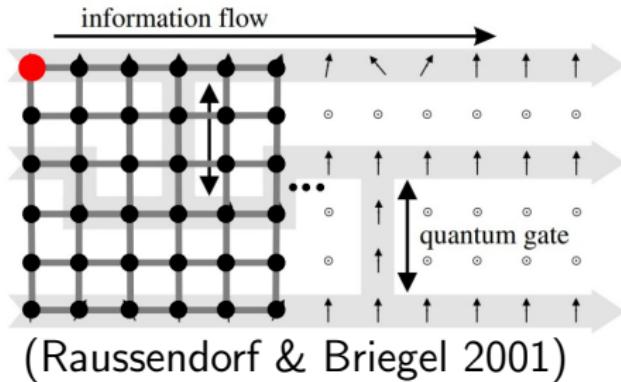
- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .

# A graph-based model of quantum computing



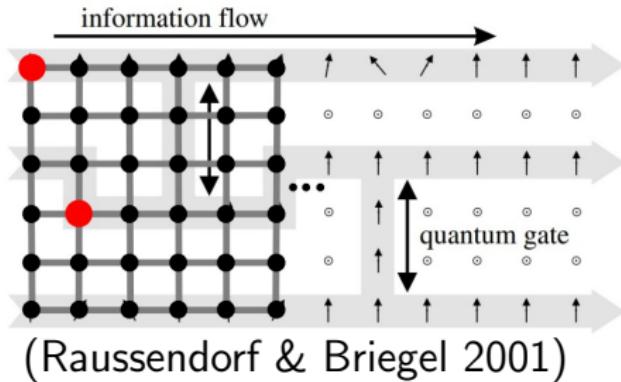
- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

# A graph-based model of quantum computing



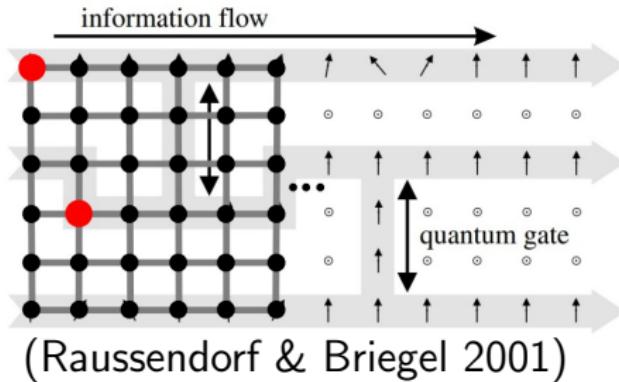
- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

# A graph-based model of quantum computing



- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

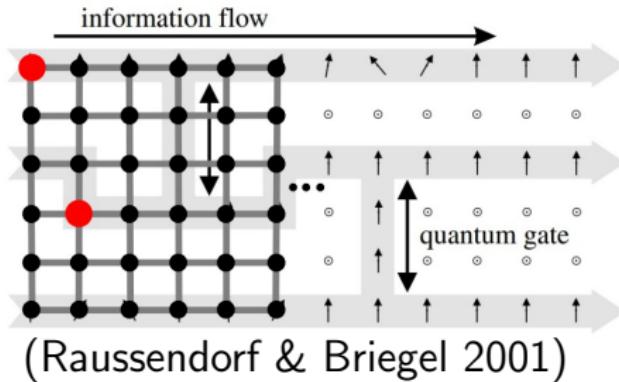
# A graph-based model of quantum computing



- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

**Theorem:** Roughly equivalent to quantum gate model.

# A graph-based model of quantum computing

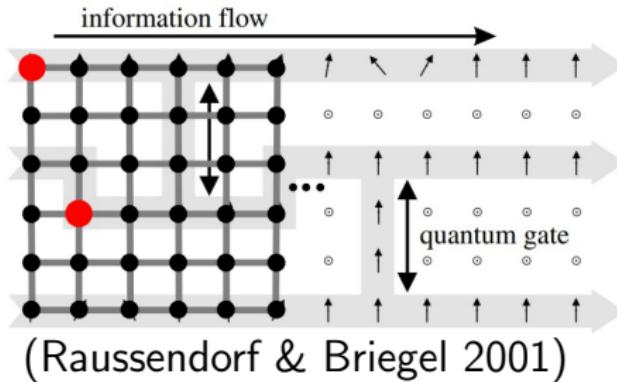


- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

# A graph-based model of quantum computing



- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

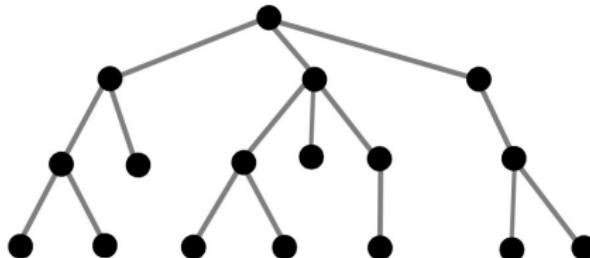
**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

**Conjecture (Geelen):** **All of them;** no proper fragment of quantum computing is stronger than classical computing.

# A graph-based model of quantum computing

**Theorem:**  
True when  
 $G$  has small  
**rank-width**.



(Van den Nest, Dür, Vidal, & Briegel 2007)

- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

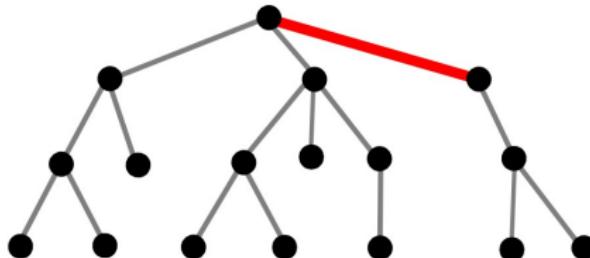
**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

**Conjecture** (Geelen): **All of them**; no proper fragment of quantum computing is stronger than classical computing.

# A graph-based model of quantum computing

**Theorem:**  
True when  
 $G$  has small  
**rank-width**.



(Van den Nest, Dür, Vidal, & Briegel 2007)

- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

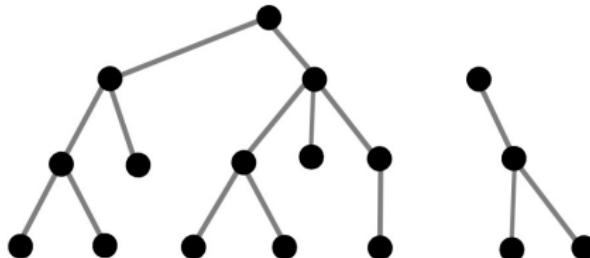
**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

**Conjecture** (Geelen): **All of them**; no proper fragment of quantum computing is stronger than classical computing.

# A graph-based model of quantum computing

**Theorem:**  
True when  
 $G$  has small  
**rank-width**.



(Van den Nest, Dür, Vidal, & Briegel 2007)

- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

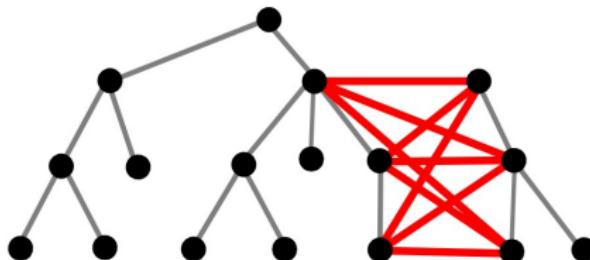
**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

**Conjecture** (Geelen): **All of them**; no proper fragment of quantum computing is stronger than classical computing.

# A graph-based model of quantum computing

**Theorem:**  
True when  
 $G$  has small  
**rank-width**.



(Van den Nest, Dür, Vidal, & Briegel 2007)

- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

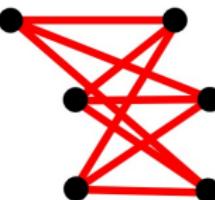
**Conjecture** (Geelen): **All of them**; no proper fragment of quantum computing is stronger than classical computing.

# A graph-based model of quantum computing

## Theorem:

True when  
 $G$  has small  
**rank-width**.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



(Van den Nest, Dür, Vidal, & Briegel 2007)

- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

**Theorem:** Roughly equivalent to quantum gate model.

**Q:** What resources are necessary for quantum computing?

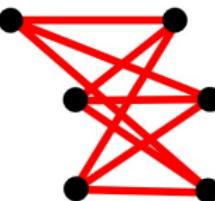
**Conjecture** (Geelen): **All of them**; no proper fragment of quantum computing is stronger than classical computing.

# A graph-based model of quantum computing

**Theorem:**

True when  
 $G$  has small  
**rank-width**.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



Rank captures  
the level of  
entanglement.

(Van den Nest, Dür, Vidal, & Briegel 2007)

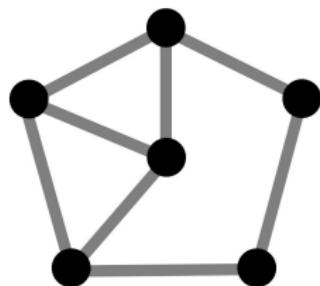
- 1) Given an  $n$ -vertex graph  $G$ , prepare an  $n$ -qubit state  $|G\rangle$ .
- 2) Use classical computing to determine qubits to measure.

**Theorem:** Roughly equivalent to quantum gate model.

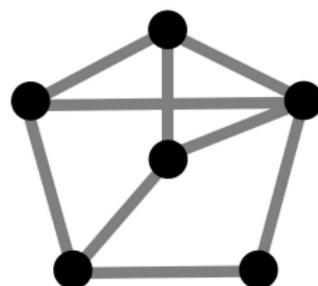
**Q:** What resources are necessary for quantum computing?

**Conjecture** (Geelen): **All of them**; no proper fragment of quantum computing is stronger than classical computing.

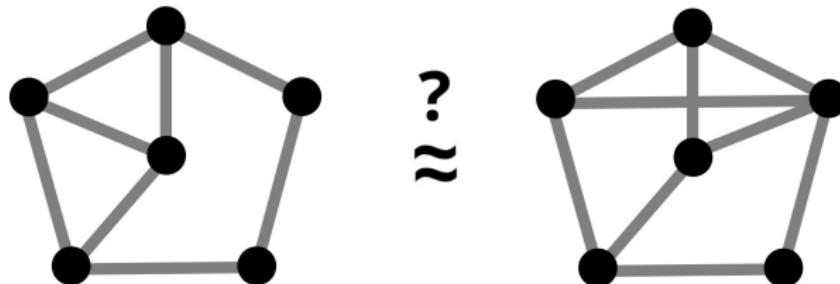
When are  $|G\rangle$  and  $|G'\rangle$  equivalent?



? ≈



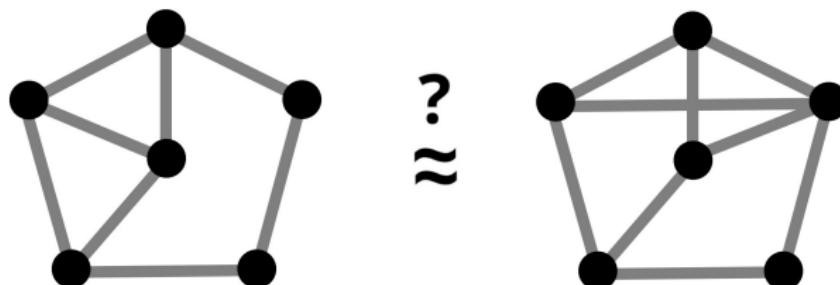
## When are $|G\rangle$ and $|G'\rangle$ equivalent?



Two states are **LC-equivalent** if one can be transformed into the other by applying unitaries that:

- act on one qubit, and

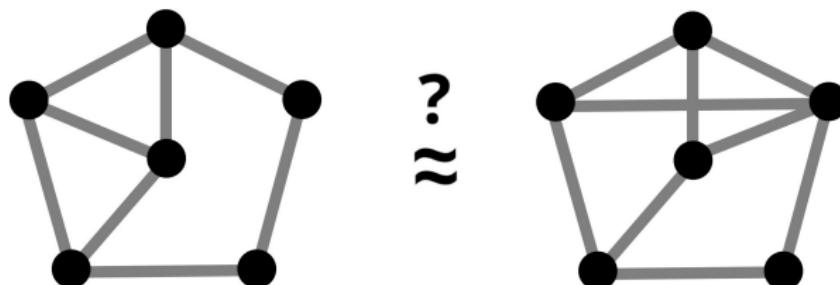
## When are $|G\rangle$ and $|G'\rangle$ equivalent?



Two states are **LC-equivalent** if one can be transformed into the other by applying unitaries that:

- act on one qubit, and
- normalize the Pauli group, i.e., satisfy  $U\mathcal{P}_1U^\top = \mathcal{P}_1$ .

## When are $|G\rangle$ and $|G'\rangle$ equivalent?

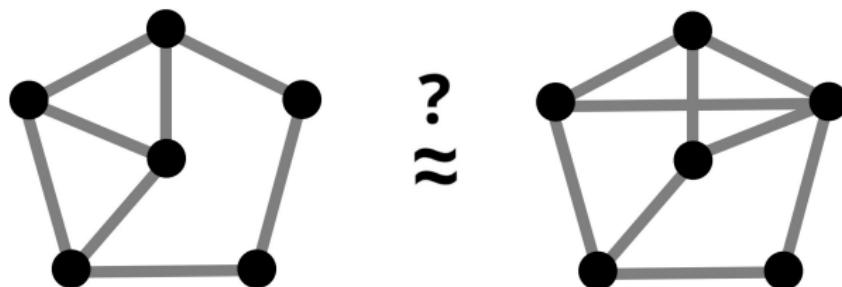


Two states are **LC-equivalent** if one can be transformed into the other by applying unitaries that:

- act on one qubit, and
- normalize the Pauli group, i.e., satisfy  $U\mathcal{P}_1U^\dagger = \mathcal{P}_1$ .

**Theorem** (Van den Nest, Dehaene, & De Moor 2004):  
 $|G\rangle$  and  $|G'\rangle$  **LC-equivalent**  $\Leftrightarrow G$  and  $G'$  **locally equivalent**

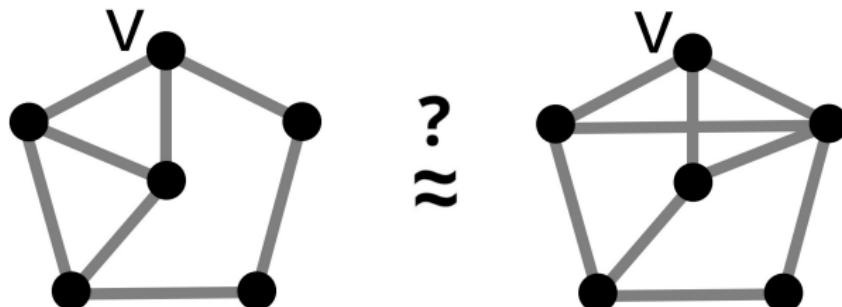
## When are $|G\rangle$ and $|G'\rangle$ equivalent?



Two graphs are **locally-equivalent** if one can be transformed into the other by applying **local complementations**. For this:

**Theorem** (Van den Nest, Dehaene, & De Moor 2004):  
 $|G\rangle$  and  $|G'\rangle$  **LC-equivalent**  $\Leftrightarrow G$  and  $G'$  **locally equivalent**

## When are $|G\rangle$ and $|G'\rangle$ equivalent?

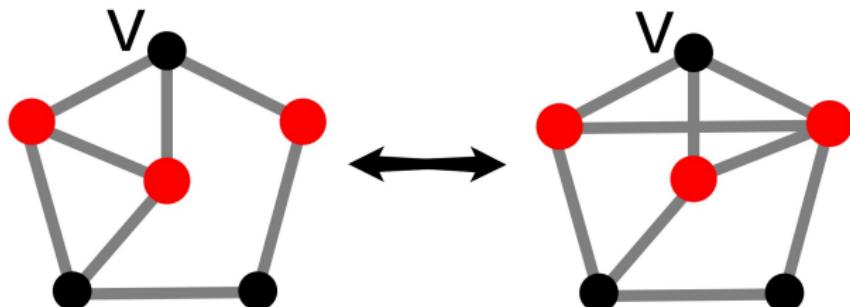


Two graphs are **locally-equivalent** if one can be transformed into the other by applying **local complementations**. For this:

- select a vertex  $v$ , then

**Theorem** (Van den Nest, Dehaene, & De Moor 2004):  
 $|G\rangle$  and  $|G'\rangle$  **LC-equivalent**  $\Leftrightarrow G$  and  $G'$  **locally equivalent**

## When are $|G\rangle$ and $|G'\rangle$ equivalent?

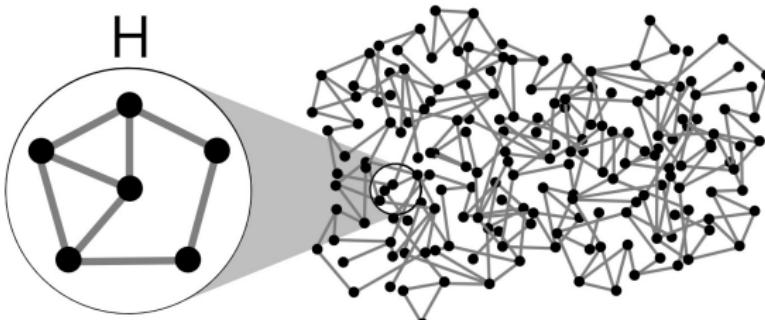


Two graphs are **locally-equivalent** if one can be transformed into the other by applying **local complementations**. For this:

- select a vertex  $v$ , then
- switch adjacencies within the **neighborhood** of  $v$ .

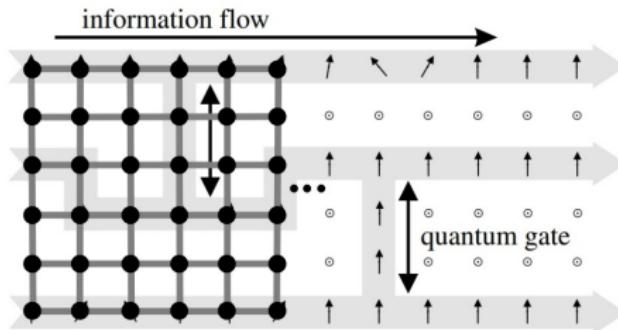
**Theorem** (Van den Nest, Dehaene, & De Moor 2004):  
 $|G\rangle$  and  $|G'\rangle$  **LC-equivalent**  $\Leftrightarrow G$  and  $G'$  **locally equivalent**

## Forbidding a vertex-minor



A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

# Forbidding a vertex-minor

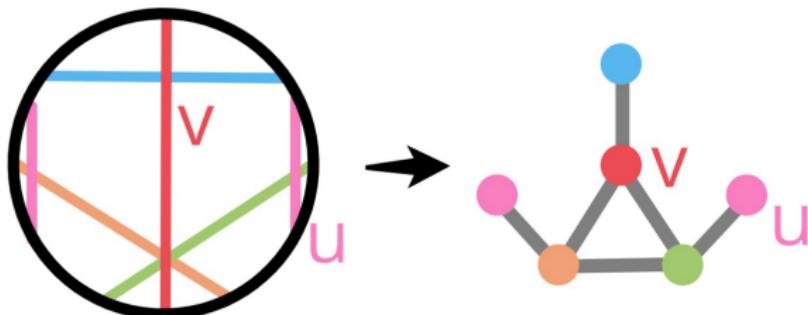


A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

**Conjecture** (Geelen): If  $G$  forbids a vertex-minor  $H$ , then

- 1) we can **classically simulate** quantum computing on  $|G\rangle$ ,

## Forbidding a vertex-minor

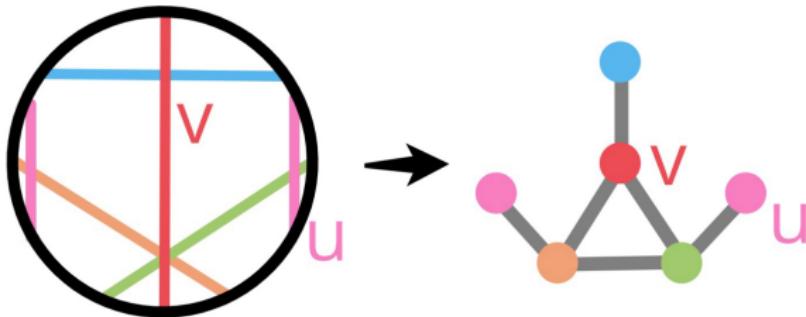


A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

**Conjecture** (Geelen): If  $G$  forbids a vertex-minor  $H$ , then

- 1) we can **classically simulate** quantum computing on  $|G\rangle$ ,
- 2)  $G$  decomposes into parts that are almost **circle graphs**.

## Forbidding a vertex-minor

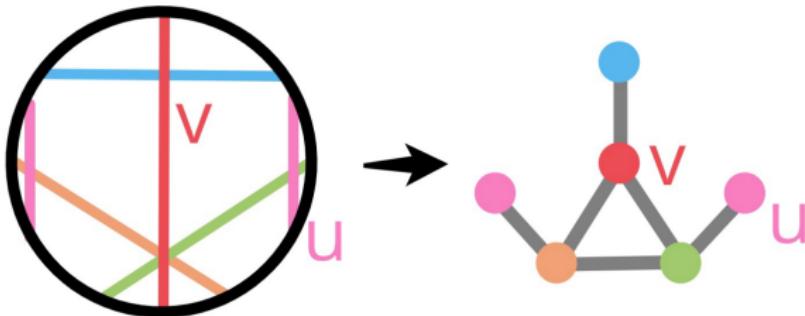


A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

**Conjecture** (Geelen): If  $G$  forbids a vertex-minor  $H$ , then

- 1) we can **classically simulate** quantum computing on  $|G\rangle$ ,
- 2)  $G$  decomposes into parts that are almost **circle graphs**.

# Forbidding a vertex-minor

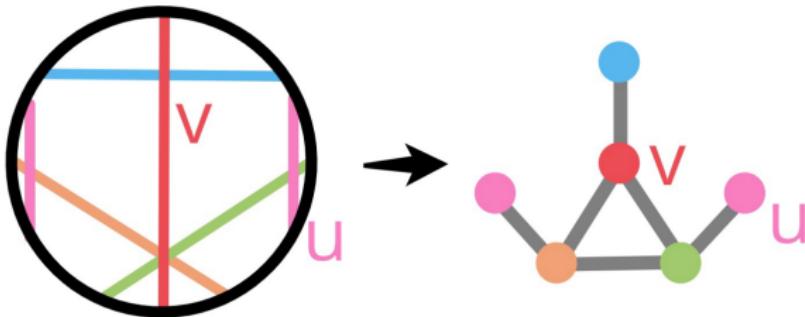


A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

**Conjecture** (Geelen): If  $G$  forbids a vertex-minor  $H$ , then

- 1) we can **classically simulate** quantum computing on  $|G\rangle$ ,
- 2)  $G$  decomposes into parts that are almost **circle graphs**.

# Forbidding a vertex-minor



A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

**Conjecture** (Geelen): If  $G$  forbids a vertex-minor  $H$ , then

- 1) we can **classically simulate** quantum computing on  $|G\rangle$ ,
- 2)  $G$  decomposes into parts that are almost **circle graphs**.

Local Structure for Vertex-Minors

R McCarty

University of Waterloo

The grid theorem for vertex-minors

J Geelen, O Kwon, R McCarty, P Wollan

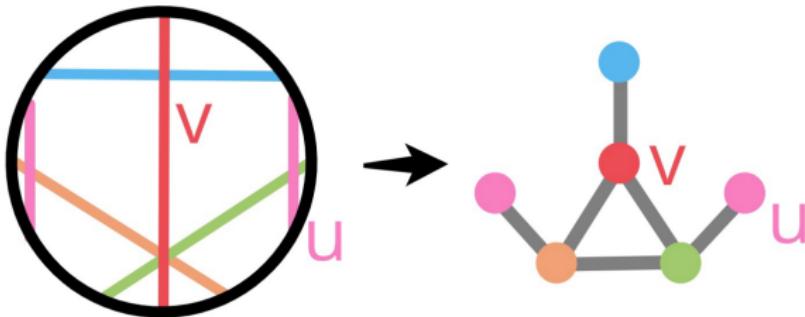
Journal of Combinatorial Theory, Series B

Decomposing a signed graph into rooted circuits

R McCarty

Advances in Combinatorics.

# Forbidding a vertex-minor



A graph  $G$  forbids a graph  $H$  as a **vertex-minor** if no graph that is locally equivalent to  $G$  contains a copy of  $H$ .

**Conjecture** (Geelen): If  $G$  forbids a vertex-minor  $H$ , then

- 1) we can **classically simulate** quantum computing on  $|G\rangle$ ,
- 2)  $G$  decomposes into parts that are almost **circle graphs**.

## Local Structure for Vertex-Minors

R McCarty  
University of Waterloo

**The grid theorem for vertex-minors**  
J Geelen, O Kwon, R McCarty, P Wollan  
Journal of Combinatorial Theory, Series B

## Decomposing a signed graph into rooted circuits

R McCarty  
Advances in Combinatorics

**Obstructions for bounded shrub-depth and rank-depth**  
O Kwon, R McCarty, S Oum, P Wollan  
Journal of Combinatorial Theory, Series B 149, 76-91

## Figures

- <https://www.arcgis.com/apps/mapviewer/index.html?layers=d4090758322c4d32a4cd002ffaa0aa12>
- <https://simons.berkeley.edu/programs/summer-cluster-error-correcting-codes-high-dimensional-expansion>
- <https://www.ajc.com/lifestyles/flashback-photos-spaghetti-junction-through-the-years/YcgLW4PA0bGnjBLOEv8JbO/>
- <https://www.cbo.gov/publication/56990>
- <https://stock.adobe.com/images/diamond-crystal-structure-model-3d/44740015>
- <https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.5188>

**Thank you!**