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1 min

Vertices V
Edges E
Graph G = (V,E)
Edge-weights w : E — R>g
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What is the fastest route from A to B?
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What is the fastest route from A to B?
How many cars can go from A to B without traffic?
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A graph is a
bad expander
if deleting a few
vertices/edges
can disconnect
a huge part.

error correction,
pseudorandomness,

hash functions,

Markov chains

What is the fastest route from A to B?
How much electricity can A send to B?
Where is the power grid the most vulnerable?
How can we design robust networks (ie good expanders)?
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How can we design robust networks (ie good expanders)?
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A graph is a
bad expander We understand
if deleting a few optimal expanders
vertices/edges where each vertex is
can disconnect incident to k edges.
a huge part.

What is the fastest route from A to B?
How much electricity can A send to B?
Where is the power grid the most vulnerable?
How can we design robust networks (ie good expanders)?
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Classical graph theory

A graph is a
bad expander
if deleting a few
vertices/edges
can disconnect
a huge part.

Theorem [LT]:
Road networks
« without bridges
are bad expanders.

What is the fastest route from A to B?
How much electricity can A send to B?
Where is the power grid the most vulnerable?
How can we design robust networks (ie good expanders)?
Keywords:
connectivity, separators, submodularity, linear programming
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How can we design high-dimensional expanders?
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How can we design high-dimensional expanders?
How can we determine and utilize structural properties?
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How can we design high-dimensional expanders?
How can we determine and utilize structural properties?
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How can we design high-dimensional expanders?
How can we determine and utilize structural properties?
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How can we design high-dimensional expanders?
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How can we design high-dimensional expanders?
How can we determine and utilize structural properties?
Can quantum computing speed up classical graph problems?
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How can we design high-dimensional expanders?

How can we determine and utilize structural properties?
Can quantum computing speed up classical graph problems?

What if we care about the rank of matrices?
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How can we design high-dimensional expanders?

How can we determine and utilize structural properties?
Can quantum computing speed up classical graph problems?

What if we care about the rank of matrices?
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How can we design high-dimensional expanders?
How can we determine and utilize structural properties?
Can quantum computing speed up classical graph problems?
What if we care about the rank of matrices?
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
2) Use classical computing to determine qubits to measure.



A graph-based model of quantum computing

information flow
r A ?

v oo

o o

~

— o —»

o — o —

020 — o —y
3
wme B o B2

[
e
=
[
=
o

©

tt ottt
(Raussendorf & Briegel 20

©

D e
o8 o — o

©
— — — o

O L .
=

1)

1) Given an n-vertex graph G, prepare an n-qubit state |G).
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
2) Use classical computing to determine qubits to measure.
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
2) Use classical computing to determine qubits to measure.

Theorem: Roughly equivalent to quantum gate model.
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
2) Use classical computing to determine qubits to measure.

Theorem: Roughly equivalent to quantum gate model.

Q: What resources are necessary for quantum computing?
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
2) Use classical computing to determine qubits to measure.
Theorem: Roughly equivalent to quantum gate model.
Q: What resources are necessary for quantum computing?

Conjecture (Geelen): All of them; no proper fragment of
quantum computing is stronger than classical computing.
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1) Given an n-vertex graph G, prepare an n-qubit state |G).
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Q: What resources are necessary for quantum computing?
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A graph-based model of quantum computing

Theorem: Rank captures
True when 1 1 1 the level of
G has small i & I entanglement.
rank-width. 1 1 1

(Van den Nest, Dir, Vidal, & Briegel 2007)

1) Given an n-vertex graph G, prepare an n-qubit state |G).
2) Use classical computing to determine qubits to measure.

Theorem: Roughly equivalent to quantum gate model.

Q: What resources are necessary for quantum computing?

Conjecture (Geelen): All of them; no proper fragment of
quantum computing is stronger than classical computing.
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into the other by applying local complementations. For this:

Theorem (Van den Nest, Dehaene, & De Moor 2004):
|G) and |G’) LC-equivalent < G and G’ locally equivalent



When are |G) and |G’) equivalent?
\Y \Y/

L

Two graphs are locally-equivalent if one can be transformed
into the other by applying local complementations. For this:
o select a vertex v, then

Theorem (Van den Nest, Dehaene, & De Moor 2004):
|G) and |G’) LC-equivalent < G and G’ locally equivalent



When are |G) and |G’) equivalent?
\Y \Y/

Two graphs are locally-equivalent if one can be transformed
into the other by applying local complementations. For this:
o select a vertex v, then

e switch adjacencies within the neighborhood of v.

Theorem (Van den Nest, Dehaene, & De Moor 2004):
|G) and |G’) LC-equivalent < G and G’ locally equivalent



Forbidding a vertex-minor

A graph G forbids a graph H as a vertex-minor if no graph
that is locally equivalent to G contains a copy of H.
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R McCarty
University of Waterloo
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A graph G forbids a graph H as a vertex-minor if no graph
that is locally equivalent to G contains a copy of H.

Conjecture (Geelen): If G forbids a vertex-minor H, then
1) we can classically simulate quantum computing on |G),
2) G decomposes into parts that are almost circle graphs.

Local Structure for Vertex-Minors Decomposing a signed graph into rooted circuits
R McCarty £ ’ R McCarty : o i
University of Waterloo The grid theorem for vertex-minors  qyances in Combinatorics. Obstructions for bounded shrub-depth and rank-depth

J Geelen, O Kwon, R McCarty, P Wollan O Kwon, R McCarty, S Oum, P Wollan
Journal of Combinatorial Theory, Series B Journal of Combinatorial Theory, Series B 149, 76-91



Figures

https://www.arcgis.com /apps/mapviewer /index.html|?
layers=d4090758322c4d32a4cd002ffaa0aal2

https://simons.berkeley.edu/programs/summer-cluster-
error-correcting-codes-high-dimensional-expansion

https://www.ajc.com/lifestyles/flashback-photos-
spaghetti-junction-through-the-
years/YcgLW4PAObGnjBLOEV8JbO/
https://www.cbo.gov/publication /56990

https://stock.adobe.com /images/diamond-crystal-
structure-model-3d /44740015

https://journals.aps.org/prl/abstract/10.1103
/PhysRevLett.86.5188

Thank you!


https://www.arcgis.com/apps/mapviewer/index.html?layers=d4090758322c4d32a4cd002ffaa0aa12
https://www.arcgis.com/apps/mapviewer/index.html?layers=d4090758322c4d32a4cd002ffaa0aa12
https://simons.berkeley.edu/programs/summer-cluster-error-correcting-codes-high-dimensional-expansion
https://simons.berkeley.edu/programs/summer-cluster-error-correcting-codes-high-dimensional-expansion
https://www.ajc.com/lifestyles/flashback-photos-spaghetti-junction-through-the-years/YcgLW4PA0bGnjBLOEv8JbO/
https://www.ajc.com/lifestyles/flashback-photos-spaghetti-junction-through-the-years/YcgLW4PA0bGnjBLOEv8JbO/
https://www.ajc.com/lifestyles/flashback-photos-spaghetti-junction-through-the-years/YcgLW4PA0bGnjBLOEv8JbO/
https://www.cbo.gov/publication/56990
https://stock.adobe.com/images/diamond-crystal-structure-model-3d/44740015
https://stock.adobe.com/images/diamond-crystal-structure-model-3d/44740015
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.5188
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.5188

