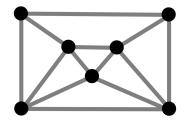
Structural graph theory and monadic stability

Rose McCarty

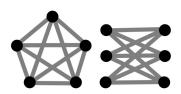
March 19, 2023

AMS Special Session on Logic, Combinatorics, and Their Interactions

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.

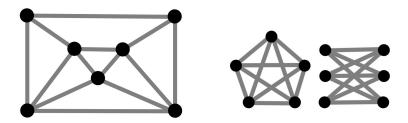


planar graph



forbidden minors

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.

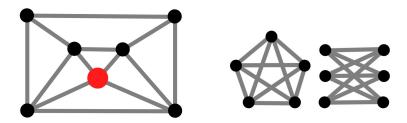


planar graph

forbidden minors

Minors are obtained by:

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.



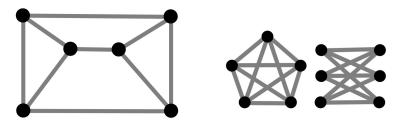
planar graph

forbidden minors

Minors are obtained by:

deleting vertices,

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.



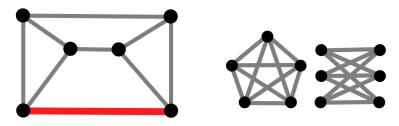
planar graph

forbidden minors

Minors are obtained by:

deleting vertices,

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.

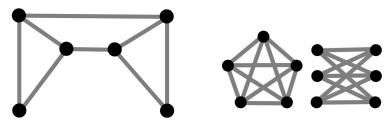


planar graph

forbidden minors

Minors are obtained by: deleting vertices, deleting edges,

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.

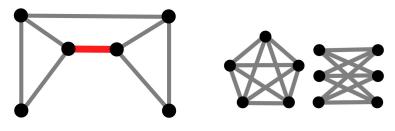


planar graph

forbidden minors

Minors are obtained by: deleting vertices, deleting edges,

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.

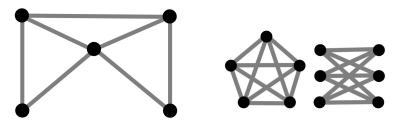


planar graph

forbidden minors

Minors are obtained by: deleting vertices, deleting edges, and contracting edges.

A (finite) graph embeds in the plane iff it does not have K_5 or $K_{3,3}$ as a minor.



planar graph

forbidden minors

Minors are obtained by: deleting vertices, deleting edges, and contracting edges. Structure Theorem (Robertson & Seymour 2003)

A class of graphs excludes a **minor** iff its graphs "decompose" into parts that "almost embed" in a surface of bounded genus.

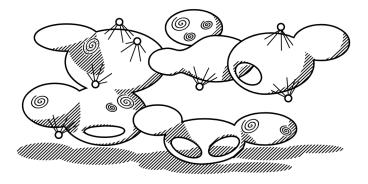


Figure by Felix Reidl

Structure Theorem (Robertson & Seymour 2003)

A class of graphs excludes a **minor** iff its graphs "decompose" into parts that "almost embed" in a surface of bounded genus.

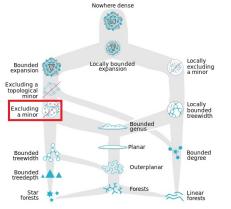


Figure by Felix Reidl

Structure Theorem (Robertson & Seymour 2003)

A class of graphs excludes a **minor** iff its graphs "decompose" into parts that "almost embed" in a surface of bounded genus.

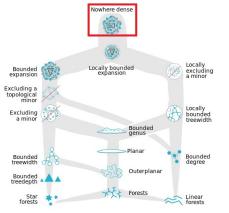
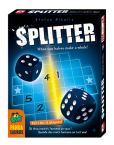
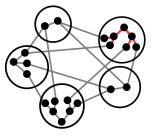


Figure by Felix Reidl

A class of graphs excludes an *r*-shallow minor for each $r \in \mathbb{N}$ iff Splitter wins the radius-*r* splitter game for each $r \in \mathbb{N}$.



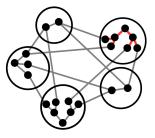
winning strategy



excluded shallow minors

A class of graphs excludes an *r*-shallow minor for each $r \in \mathbb{N}$ iff Splitter wins the radius-*r* splitter game for each $r \in \mathbb{N}$.

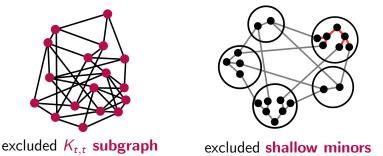
winning strategy



excluded shallow minors

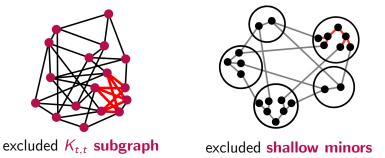
Theorem (Adler & Adler 2014 + Dvořák 2018) iff stable in the sense of Shelah and excludes $K_{t,t}$ subgraph.

A class of graphs excludes an *r*-shallow minor for each $r \in \mathbb{N}$ iff Splitter wins the radius-*r* splitter game for each $r \in \mathbb{N}$.



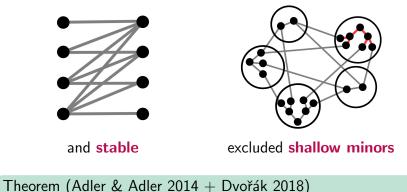
Theorem (Adler & Adler 2014 + Dvořák 2018) iff stable in the sense of Shelah and excludes $K_{t,t}$ subgraph.

A class of graphs excludes an *r*-shallow minor for each $r \in \mathbb{N}$ iff Splitter wins the radius-r splitter game for each $r \in \mathbb{N}$.



Theorem (Adler & Adler 2014 + Dvořák 2018) iff stable in the sense of Shelah and excludes $K_{t,t}$ subgraph.

A class of graphs excludes an *r*-shallow minor for each $r \in \mathbb{N}$ iff Splitter wins the radius-r splitter game for each $r \in \mathbb{N}$.



iff stable in the sense of Shelah and excludes $K_{t,t}$ subgraph.

View G as a model over the signature with a binary relation E.

1) $xy \in E$ and x = y are formulas.

1) $xy \in E$ and x = y are formulas.

2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,

- 1) $xy \in E$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

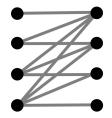
1)
$$xy \in E$$
 and $x = y$ are formulas.

2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,

3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A class C is **stable** if there is no formula $\psi(\bar{x}, \bar{y})$ st for all n there is $G \in C$ with tuples $\bar{a}_1, \ldots, \bar{a}_n, \bar{b}_1, \ldots, \bar{b}_n$ of vertices st

$$G \models \phi(\bar{a}_i, \bar{b}_j) \quad \leftrightarrow \quad i \leq j.$$



1)
$$xy \in E$$
 and $x = y$ are formulas.

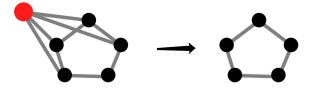
2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,

3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A class C is **stable** if there is no formula $\psi(\bar{x}, \bar{y})$ st for all n there is $G \in C$ with tuples $\bar{a}_1, \ldots, \bar{a}_n, \bar{b}_1, \ldots, \bar{b}_n$ of vertices st

$$G \models \phi(\bar{a}_i, \bar{b}_j) \quad \leftrightarrow \quad i \leq j.$$

We also assume all classes are closed under deleting vertices.



A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Model theory: Baldwin and Shelah.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Model theory: Baldwin and Shelah. Combinatorics: Dreier, Mählmann, Siebertz, and Toruńczyk.

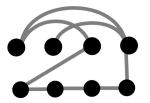
A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector.

Theorem (With Gajarský, Mählmann, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, & Toruńczyk.) A class of graphs is **stable** if and only if Flipper wins the

radius-*r* flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector.



To flip, select $X \subseteq V(G)$ and replace G[X] by its complement.

Theorem (With Gajarský, Mählmann, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, & Toruńczyk.) A class of graphs is **stable** if and only if Flipper wins the

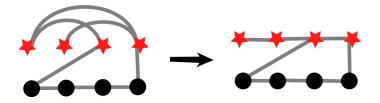
radius-*r* flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector.

To flip, select $X \subseteq V(G)$ and replace G[X] by its complement.

Theorem (With Gajarský, Mählmann, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, & Toruńczyk.) A class of graphs is stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector.



To flip, select $X \subseteq V(G)$ and replace G[X] by its complement.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round: 1) If |V(G)| = 1 then Flipper wins in that round.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

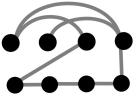
- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

Example with r = 2:



A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

Example with r = 2:

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the **radius**-*r* flipper game for each $r \in \mathbb{N}$.

Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is **stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

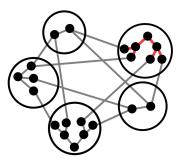
Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

Flipper wins the game on a class C if there exists $t \in \mathbb{N}$ so that Flipper wins in $\leq t$ rounds on each $G \in C$.

Theorem (Grohe, Kreutzer, & Siebertz 2019)

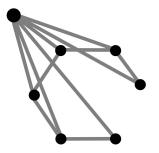
First-order **model-checking** is fixed-parameter tractable on any class which is **stable** & excludes $K_{t,t}$ -subgraph.



Theorem (Grohe, Kreutzer, & Siebertz 2019)

First-order **model-checking** is fixed-parameter tractable on any class which is **stable** & excludes $K_{t,t}$ -subgraph.

Naive algorithm for determining if $G \models \phi$: $\mathcal{O}(n^{|\phi|})$.

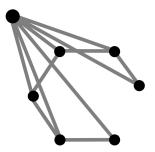


Theorem (Grohe, Kreutzer, & Siebertz 2019)

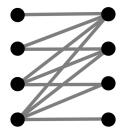
First-order **model-checking** is fixed-parameter tractable on any class which is **stable** & excludes $K_{t,t}$ -subgraph.

Naive algorithm for determining if $G \models \phi$: $\mathcal{O}(n^{|\phi|})$.

FO model-checking is FPT on C if there exists $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{R}$ so that the problem can be solved in time $f(|\phi|)n^c$.

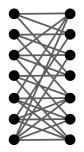


Recall that we use first-order logic to "exclude":



half-graph

Instead "exclude" an arbitrary bipartite graph:

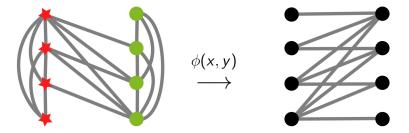


bipartite graph



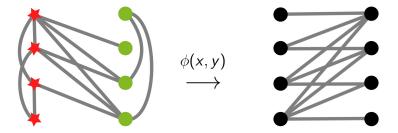
 $G \in \mathcal{C}$

$$\phi(x,y) \coloneqq \neg xy \in E$$



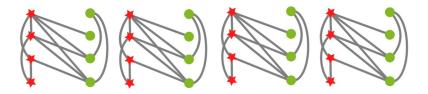
 $G \in \mathcal{C}$

$$\phi(x,y) \coloneqq (\neg xy \in E) \land (c(x) \neq c(y))$$



 $G \in \mathcal{C}$

$$\phi(x,y) \coloneqq (\neg xy \in E) \land (c(x) \neq c(y))$$



$$\phi(x,y) \coloneqq (\neg xy \in E) \land (c(x) \neq c(y)) \land (\neg x \operatorname{copy} y)$$

For fixed $\phi(x, y)$, the resulting **transduction** of C is the class of all graphs which can be obtained this way.

$$\phi(x,y) \coloneqq (\neg xy \in E) \land (c(x) \neq c(y)) \land (\neg x \operatorname{copy} y)$$

Conjecture (Gajarský, Pilipczuk, Toruńczyk)

A class has unbounded clique-width if and only if it has an FO-transduction which contains a subdivision of each wall.

Conjecture (Gajarský, Pilipczuk, Toruńczyk)

A class has unbounded clique-width if and only if it has an FO-transduction which contains a subdivision of each wall.

Thank you!