Vertex-Minors and Circle Graphs

Rose McCarty
Department of Combinatorics and Optimization
UNIVERSITY OF
WATERLOO

December 2019

A circle graph is the intersection graph of chords on a circle.

chord diagram

circle graph G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

chord diagram

circle graph G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

chord diagram

circle graph

$$
G * V
$$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

chord diagram

circle graph
$G * v * u$

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

chord diagram

circle graph
$G * v * u$

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

chord diagram

circle graph
$G * v * u * u$

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

chord diagram

circle graph
$G * v * u * u * v=G$

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

chord diagram

circle graph G

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

chord diagram

circle graph

$$
G * V
$$

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

chord diagram

circle graph
$G * v * u$

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

chord diagram

circle graph
$G * v * u-v$

Can we describe the structure of graphs without a vertex-minor isomorphic to H ?

Theorem (Bouchet, 94)
A graph is a circle graph if and only if it does not have one of the following as a vertex minor.

ANDRÉ BOUCHET

How can we represent the local equivalence class of a circle graph?

chord diagram

tour graph

How can we represent the local equivalence class of a circle graph?

chord diagram

tour graph

Bouchet (94) gave "connectivity" conditions under which local equivalence classes of circle graphs are in bijection with 4-regular graphs.

circle graph

tour graph

What about deleting vertices?

chord diagram

tour graph

What about deleting vertices?

chord diagram

tour graph

Can we describe the structure of graphs G without a vertex-minor isomorphic to H ?

- If G is a circle graph, this is captured by immersions of its tour graph.
(Robertson and Seymour; DeVos, McDonald, Mohar, Scheide, 13; Wollan, 15)
- What if H is a circle graph?

Then G can be "recursively decomposed" along "simple" vertex partitions.

The adjacency matrix of G is the $V(G) \times V(G)$ matrix over the binary field with (u, v)-entry 1 if $u v \in E(G)$ and 0 otherwise.

adjacency matrix A
graph G

The rank of a vertex partition (X, Y) is the rank of the submatrix $A[X, Y]$.

$\operatorname{rank}(X, Y)$

$$
X=\{u, v\}
$$

The rank of a vertex partition (X, Y) is the rank of the submatrix $A[X, Y]$.

$$
=\operatorname{rank}(Y, X)
$$

$$
X=\{u, v\}
$$

The rank of a vertex partition (X, Y) is the rank of the submatrix $A[X, Y]$.

chord diagram

circle graph with $\operatorname{rank}(X, Y)=1$

The rank-width of G is the minimum over all subcubic trees T with Leaves $(T)=V(G)$, of the maximum of $\operatorname{rank}\left(X_{e}, Y_{e}\right)$ for $e \in E(T)$.

If H is a vertex-minor of G, then $r w(H) \leq \operatorname{rw}(G)$. (Oum and Seymour, 06)

Theorem (Geelen, Kwon, McCarty, Wollan 19+) For any circle graph H, there exists c_{H} so that every graph with no vertex-minor isomorphic to H has rank-width at most c_{H}.

Theorem (Kwon, McCarty, Oum, Wollan 19+)
For any path H, there exists c_{H} so that every graph with no vertex-minor isomorphic to H has rank-depth at most c_{H}.

Can we describe the structure of graphs G without a vertex-minor isomorphic to H ?

- We may assume G has our favorite circle graph ξ as a vertex-minor.
- The way a vertex $v \in V(G) \backslash V(\xi)$ "attaches onto ξ " can be stored as a subset of the edges of the tour graph of ξ.
- So we work with 4-regular graphs with edges labelled in \mathbb{Z}_{2}^{k}.

Conjecture

For any proper vm-closed class of graphs, there exists a polynomial p such that each graph in the class with clique number ω has chromatic number at most $p(\omega)$.

Conjecture

For any proper vm-closed class of graphs, there is a polynomial time algorithm for max clique.

Conjecture

Graphs are well-quasi-ordered by vertex-minors.

