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Matrices are over the binary field.
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edge-connectivity = minX ,Y #1’s in adj [X ,Y ]

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix



Rank(X ,Y ) is the rank of adj [X ,Y ].
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rank-connectivity(S ,T ) = minX ,Y rank(X ,Y )

A graph is k-rank-connected if

rank(X ,Y ) ≥ min (|X |, |Y |, k).
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Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Pivot-minors (−v and ×) essentially generalize minors.

Vertex-minors allow all three (−v , ∗, and ×).

Figure by

Felix Reidl

What is the structure of graphs with
a forbidden vertex-minor?

https://tcs.rwth-aachen.de/~reidl/
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When does every partition have rank(X ,Y ) ≤ k?

Theorem

If so, then there is a symmetric matrix M with ≤ f (k)
non-zero entries s.t. adj(G ) + M is a k-perturbation of 0.
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Pivoting (×) on an edge va complements between three sets
and exchanges labels; G × va = G ∗ v ∗ a ∗ v = G ∗ a ∗ v ∗ a.
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Rank(X ,Y ) is the same in G and G × va.
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Theorem
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Conjecture

Every rH-rank-connected graph with no H-vertex-minor is
a kH-perturbation of an intersection graph of chords on a
circle.

chords on a circle

−→

intersection graph



Thank you!


