Connectivity for adjacency matrices and vertex-minors

Rose McCarty
Department of Combinatorics and Optimization
远
WATERLOO

Joint work with Jim Geelen and Paul Wollan

$$
\mathrm{X}\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

adjacency matrix

biclique
$\mathrm{X} \quad \begin{array}{cccccc}\mathrm{X} & & & \mathrm{Y} & \\ \mathrm{Y} & {\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]}\end{array}$
adjacency matrix

adjacency matrix

adjacency matrix

Matrices are over the binary field.

biclique
$\left.\begin{array}{c}\mathrm{X} \\ \mathrm{X} \\ \mathrm{X}\end{array} \begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
adjacency matrix

edge-connectivity $=\min _{X, Y} \# 1$'s in $\operatorname{adj}[X, Y]$

biclique

adjacency matrix
$\operatorname{Rank}(X, Y)$ is the rank of $\operatorname{adj}[X, Y]$.

biclique

X
X

X | 0 | Y | | | |
| :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 1 | 1 |
| 0 | 1 | | | |
| 0 | 0 | 0 | 1 | 1 | 1

adjacency matrix
$\operatorname{Rank}(X, Y)$ is the rank of $\operatorname{adj}[X, Y]$.

biclique

		X				Y	
X	[0	0	0		1	1	17
	0	0	0		1	1	1
	0	0	0		1	1	1
	1	1	1		0	0	0
Y	1	1	1		0	0	0
	1	1	1		0	0	0

adjacency matrix
$\operatorname{rank}(X, Y)=\operatorname{rank}(Y, X)$

$\operatorname{Rank}(X, Y)$ is the rank of $\operatorname{adj}[X, Y]$.

biclique

		x				Y	
\times	50	0	0	1		1	17
	0	0	0	1	,	1	1
	0	0	0	1		1	1
	1	1			0	0	0
Y	1	1	1		0	0	0
	1	1	1			0	0

adjacency matrix
$\operatorname{rank}(X, Y)=\operatorname{rank}(Y, X)$
(Oum-Seymour)

rank-connectivity $(S, T)=$

rank-connectivity $(S, T)=\min _{X, Y} \operatorname{rank}(X, Y)$

rank-connectivity $(S, T)=\min _{X, Y} \operatorname{rank}(X, Y)$

A graph is k-rank-connected if $\operatorname{rank}(X, Y) \geq \min (|X|,|Y|, k)$.

Why rank-connectivity?

- Good measure of complexity for dense graphs.

rank-width/clique-width, etc.

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

(Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

(Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Either $G-e$ or G / e maintains $\operatorname{conn}(S, T)$. (Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Either $G-e$ or G / e maintains $\operatorname{conn}(S, T)$. (Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Either $G-e$ or G / e maintains $\operatorname{conn}(S, T)$. (Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Either $G-e$ or G / e maintains $\operatorname{conn}(S, T)$. (Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Either $G-e$ or G / e maintains $\operatorname{conn}(S, T)$. (Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Either $G-e$ or G / e maintains $\operatorname{conn}(S, T)$. (Menger)

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn (S, T) :

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn(S,T):

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn (S, T) :

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn (S, T) :

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn(S,T):

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn (S, T) :

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn (S, T) :

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

Most of the following maintain rank-conn (S, T) :

$$
G-v, \quad G \stackrel{*}{v} v, \quad G \underline{\times} v . \quad \text { (Oum) }
$$

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!
- Pivot-minors $(-v$ and \times) essentially generalize minors.

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!
- Pivot-minors $(-v$ and \times) essentially generalize minors.
- Vertex-minors allow all three $(-v, *$, and \times).

Why rank-connectivity?

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!
- Pivot-minors $(-v$ and \times) essentially generalize minors.
- Vertex-minors allow all three $(-v, *$, and \times).

Figure by
Felix Reidl

What is the structure of graphs with a forbidden vertex-minor?

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

$\left[\begin{array}{cccccc}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$ $\operatorname{adj}(G)$

One reason could be that the rank of

$$
\operatorname{adj}(G) \text { is } \leq k .
$$

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
$\operatorname{adj}(G)$

One reason could be that the rank of

$$
\operatorname{adj}(G) \text { is } \leq k .
$$

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
$\operatorname{adj}(G)+D$

One reason could be that the rank of

$$
\operatorname{adj}(G)+D \text { is } \leq k .
$$

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ $\operatorname{adj}(G)$

One reason could be that the rank of

$$
\operatorname{adj}(G)+D \text { is } \leq k .
$$

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

Theorem
If so, then there is a symmetric matrix M with $\leq f(k)$ non-zero entries s.t. the rank of $\operatorname{adj}(G)+M+D$ is $\leq 2 k$.

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\operatorname{adj}(G)+M
$$

Theorem
If so, then there is a symmetric matrix M with $\leq f(k)$ non-zero entries s.t. the rank of $\operatorname{adj}(G)+M+D$ is $\leq 2 k$.

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\operatorname{adj}(G)+M
$$

Theorem
If so, then there is a symmetric matrix M with $\leq f(k)$ non-zero entries s.t. the rank of $\operatorname{adj}(G)+M+D$ is $\leq 2 k$.

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

G
$\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{adj}(G)+M+D$

Theorem
If so, then there is a symmetric matrix M with $\leq f(k)$ non-zero entries s.t. the rank of $\operatorname{adj}(G)+M+D$ is $\leq 2 k$.

When does every partition have $\operatorname{rank}(X, Y) \leq k$?

Theorem
If so, then there is a symmetric matrix M with $\leq f(k)$ non-zero entries s.t. $\operatorname{adj}(G)+M$ is a k-perturbation of 0 .

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

$$
\underset{\operatorname{rrll}}{\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}=\underset{\operatorname{rank} 3}{\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}+\underset{\operatorname{rank} 1}{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]} \underset{\operatorname{rank} 2}{\left[\begin{array}{ll}
0
\end{array}\right]}
$$

$$
\vec{v} \vec{v}^{\top}
$$

$$
\begin{aligned}
& \vec{v} \vec{v}^{\top} \quad \vec{u} \vec{a}^{\top}+\vec{a} \vec{u}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]} \\
& \text { rank } 3 \\
& \text { rank } 2 \\
& \vec{v} \vec{v}^{\top} \quad \vec{u} \vec{a}^{\top}+\vec{a} \vec{u}^{\top} \\
& \text { * } \\
& X
\end{aligned}
$$

Locally complementing $(*)$ at v replaces the induced subgraph on the neighborhood of v by its complement.

C
V
a
b
c
d
d $\left[\begin{array}{llllll}V & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} \\ \mathrm{e} & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$
G
$\operatorname{adj}(G)$

Locally complementing $(*)$ at v replaces the induced subgraph on the neighborhood of v by its complement.

$\left.\begin{array}{c}c \\ V \\ \text { a } \\ \text { b } \\ \text { c } \\ \text { d } \\ \text { e }\end{array} \begin{array}{cccccc}V & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$
G
$\operatorname{adj}(G)$

Locally complementing $(*)$ at v replaces the induced subgraph on the neighborhood of v by its complement.

$G * v$

$\operatorname{adj}(G)+\vec{v} \vec{v}^{\top}$

Locally complementing $(*)$ at v replaces the induced subgraph on the neighborhood of v by its complement.

$G * v$

$$
\operatorname{adj}(G)+\vec{v} \vec{v}^{\top}
$$

$\operatorname{Rank}(X, Y)$ is the same in G and $G * v$.

Pivoting (\times) on an edge va complements between three sets and exchanges labels

G
$\quad v$
v
a
a
b
c
c
d
d $\left[\begin{array}{llllll}0 & \mathrm{~b} & 1 & \mathrm{c} & \mathrm{d} & 0 \\ 1 & \mathrm{e} \\ \mathrm{e} & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$
$\operatorname{adj}(G)$

Pivoting (\times) on an edge va complements between three sets and exchanges labels.

G
$\quad v$
v
a
b
b
c
c
d
d
e d
$\operatorname{adj}(G)$

Pivoting (\times) on an edge va complements between three sets and exchanges labels.

G
$\quad v$
v
a
b
b
c
c
d
d
e d
$\operatorname{adj}(G)$

Pivoting (\times) on an edge va complements between three sets and exchanges labels.

G

\checkmark a b c d e						
	0			1	0	
	1			0		
b	1			0		0
c	1			0	0	
d	0			0	0	
		0	0	1	1	

$\operatorname{adj}(G)$

Pivoting (\times) on an edge va complements between three sets and exchanges labels.

G

$\widetilde{\operatorname{adj}}(G)$

Pivoting (\times) on an edge va complements between three sets and exchanges labels.

$G \times v a$

	v	a	b	c	d	
		1	1	0	1	
a	1	1	1	1	0	0
b	1	1	0	1	0	0
	0	1	1	0	1	1
	1	0	0	1	0	1
	0	0	0	1		

$$
\widetilde{\operatorname{adj}}(G)+\vec{v} \vec{a}^{\top}+\vec{a}^{\top}
$$

Pivoting (\times) on an edge va complements between three sets and exchanges labels; $G \times v a=G * v * a * v=G * a * v * a$.

$\widetilde{\operatorname{adj}}(G)+\vec{v} \vec{a}^{\top}+\vec{a} \vec{v}^{\top}$
$\operatorname{Rank}(X, Y)$ is the same in G and $G \times v a$.

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underset{*}{*} v$
3) $G \subseteq v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \subseteq v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \subseteq v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \subseteq v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \times v=G \times v a-v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \times v=G \times v a-v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \times v=G \times v a-v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \underline{x} v=G \times v a-v$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \underline{x} v=G \times v a-v$

$\operatorname{rank}_{G}(X, Y) \leq \operatorname{rank}_{G^{\prime}}(X, Y)+k$

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \underline{x} v=G \times v a-v$

Theorem
If every partition has $\operatorname{rank}(X, Y) \leq k$, then there exists a k-perturbation of G with $\leq f(k)$ edges.

A k-perturbation G^{\prime} of G is obtained by adding k vertices and then removing them:

1) $G-v$
2) $G \underline{*} v=G * v-v$
3) $G \underline{x} v=G \times v a-v$

Theorem
If every partition has $\operatorname{rank}(X, Y) \leq k$, then there exists a k-perturbation of G with $\leq f(k)$ edges.

Conjecture

Every r_{H}-rank-connected graph with no H -vertex-minor is a k_{H}-perturbation of an intersection graph of chords on a circle.

chords on a circle

intersection graph

Thank you!

