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Matrices are over the binary field.
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edge-connectivity = minx y #1's in adj[X, Y]
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Rank(X, Y) is the rank of adj[X, Y].
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Rank(X, Y) is the rank of adj[X, Y].
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Rank(X, Y) is the rank of adj[X, Y].

X Y
[0 0 0 1 1 1]
X100 01 1 1
0 0 01 1 1
1 1 110 0 O
YJ1 1 110 0 O
1 1 110 0 O
X Y -
biclique adjacency matrix

rank(X, Y) = rank(Y, X)
(Oum-Seymour)



rank-connectivity(S, T) =




rank-connectivity(S, T) = minx y rank(X, Y)
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rank-connectivity(S, T) = minx y rank(X, Y)
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A graph is k-rank-connected if
rank(X,Y) > min (| X|,|Y|, k).



Why rank-connectivity?
o Good measure of complexity for dense graphs.

rank-width /clique-width, etc.
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Why rank-connectivity?
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Why rank-connectivity?
o Good measure of complexity for dense graphs.
e Oum proved a generalization of Menger's Theorem!
e Pivot-minors (—v and x) essentially generalize minors.
o Vertex-minors allow all three (—v, %, and X).
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What is the structure of graphs with
a forbidden vertex-minor?


https://tcs.rwth-aachen.de/~reidl/

When does every partition have rank(X, Y) < k?
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When does every partition have rank(X, Y) < k?
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When does every partition have rank(X, Y) < k?
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G adj(G) + D

One reason could be that the rank of
adj(G) + D is < k.



When does every partition have rank(X, Y) < k7
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If so, then there is a symmetric matrix V| with < f(k)
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When does every partition have rank(X, Y) < k7
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When does every partition have rank(X, Y) < k7
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If so, then there is a symmetric matrix V| with < f(k)
non-zero entries s.t. the rank of adj(G) + V + D is < 2k.



When does every partition have rank(X, Y) < k?

Theorem

If so, then there is a symmetric matrix V| with < f(k)
non-zero entries s.t. adj(G) + M is a k-perturbation of 0.
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Locally complementing () at v replaces the induced
subgraph on the neighborhood of v by its complement.

v v a b ¢ d
v[o 1 1 1 O
AN, ifiis
a C b1 0 0 1 1
cl|l 1 1 0 O
d|0 1 1 0 O
e |0 0 0 1 1

d e

G adj(G)

O, OOO m




Locally complementing () at v replaces the induced
subgraph on the neighborhood of v by its complement.
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Locally complementing () at v replaces the induced
subgraph on the neighborhood of v by its complement.
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Locally complementing () at v replaces the induced
subgraph on the neighborhood of v by its complement.

V v a b ¢ d e

v [0 1 1|1 0 O]

a |1 1 140 1 O

a C b 11 1 110 1 0
cl1 0 0 1 0 1

d|0 1 1 0 0 1

e |0 0 0 1 1 0
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G xv adj(G) + 777

Rank(X, Y) is the same in G and G x v.




Pivoting (x) on an edge va complements between three sets
and exchanges labels
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Pivoting (x) on an edge va complements between three sets
and exchanges labels.
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Pivoting (x) on an edge va complements between three sets
and exchanges labels.

v a b c d e
v [l 1 1 1 0 0]
a |l 1 1 0 1 0
b|1 1 0 0 1 0
c|l 0 0 0 0 1
d|0 1 1 0 0 1
e |0 0 0 1 1 0]

adi(6)



Pivoting (x) on an edge va complements between three sets
and exchanges labels.

v a b c d e
v [l 1 1 0 1 0]
a |l 1 1 1 0 0
b|1 1 0 1 0 O
c|0 1 1 0 1 1
d|l1 0 0 1 0 1
e |0 0 0 1 1 0]




Pivoting (x) on an edge va complements between three sets
and exchanges labels; G x va=Gxv*xaxv=G*xax*xvx*a.

v a b c d e
v 1 1 1]0 1 0]
a |l 1 111 0 O
b|1 1 01 0 O
c|0 1 1 0 1 1
d|l1 0 0 1 0 1
e |0 0 0 1 1 0]

adj(G) + 737 + 377

Rank(X, Y) is the same in G and G x va.
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A k-perturbation G’ of G is obtained by adding k vertices
and then removing them:

1) G—v
2) Gxv=Gxv—v
3) GXv=Gxva—v

a ./

rankg(X, Y) <rankg(X,Y) + k
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A k-perturbation G’ of G is obtained by adding k vertices
and then removing them:

1) G—v
2) GXxv=Gxv—v
3) GXv=Gxva—v

Theorem

If every partition has rank(X,Y) < k, then there exists a
k-perturbation of G with < f(k) edges.



Conjecture

Every ry-rank-connected graph with no H-vertex-minor is
a ky-perturbation of an intersection graph of chords on a
circle.
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chords on a circle intersection graph



Thank you!



