
Connectivity for adjacency matrices
and vertex-minors

Rose McCarty

Department of Combinatorics and Optimization

Joint work with Jim Geelen and Paul Wollan

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

Matrices are over the binary field.

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

edge-connectivity = minX ,Y #1’s in adj [X ,Y]

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

Rank(X ,Y) is the rank of adj [X ,Y].

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

Rank(X ,Y) is the rank of adj [X ,Y].

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

rank(X ,Y) = rank(Y ,X)

Rank(X ,Y) is the rank of adj [X ,Y].

biclique

X Y



0 0 0 1 1 1
X 0 0 0 1 1 1

0 0 0 1 1 1
1 1 1 0 0 0

Y 1 1 1 0 0 0
1 1 1 0 0 0

adjacency matrix

rank(X ,Y) = rank(Y ,X)

(Oum-Seymour)

rank-connectivity(S ,T) = minX ,Y rank(X ,Y)

rank-connectivity(S ,T) = minX ,Y rank(X ,Y)

rank-connectivity(S ,T) = minX ,Y rank(X ,Y)

A graph is k-rank-connected if

rank(X ,Y) ≥ min (|X |, |Y |, k).

Why rank-connectivity?
Good measure of complexity for dense graphs.

rank-width/clique-width, etc.

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Either G − e or G/e maintains conn(S ,T).

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Either G − e or G/e maintains conn(S ,T).

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Either G − e or G/e maintains conn(S ,T).

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Either G − e or G/e maintains conn(S ,T).

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Either G − e or G/e maintains conn(S ,T).

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Either G − e or G/e maintains conn(S ,T).

(Menger)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Most of the following maintain rank-conn(S ,T):

G − v , G ∗− v , G ×− v . (Oum)

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Pivot-minors (−v and ×) essentially generalize minors.

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Pivot-minors (−v and ×) essentially generalize minors.

Vertex-minors allow all three (−v , ∗, and ×).

Why rank-connectivity?
Good measure of complexity for dense graphs.

Oum proved a generalization of Menger’s Theorem!

Pivot-minors (−v and ×) essentially generalize minors.

Vertex-minors allow all three (−v , ∗, and ×).

Figure by

Felix Reidl

What is the structure of graphs with
a forbidden vertex-minor?

https://tcs.rwth-aachen.de/~reidl/

When does every partition have rank(X ,Y) ≤ k?





0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

G adj(G)

When does every partition have rank(X ,Y) ≤ k?





0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

G adj(G)

One reason could be that the rank of

adj(G) is ≤ k .

When does every partition have rank(X ,Y) ≤ k?





0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

G adj(G)

One reason could be that the rank of

adj(G) is ≤ k .

When does every partition have rank(X ,Y) ≤ k?





1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

G adj(G) + D

One reason could be that the rank of

adj(G) + D is ≤ k .

When does every partition have rank(X ,Y) ≤ k?





0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

G adj(G)

One reason could be that the rank of

adj(G) + D is ≤ k .

When does every partition have rank(X ,Y) ≤ k?





0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

G adj(G)

Theorem

If so, then there is a symmetric matrix M with ≤ f (k)
non-zero entries s.t. the rank of adj(G) + M + D is ≤ 2k.

When does every partition have rank(X ,Y) ≤ k?





0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

G adj(G) + M

Theorem

If so, then there is a symmetric matrix M with ≤ f (k)
non-zero entries s.t. the rank of adj(G) + M + D is ≤ 2k.

When does every partition have rank(X ,Y) ≤ k?





0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0

G adj(G) + M

Theorem

If so, then there is a symmetric matrix M with ≤ f (k)
non-zero entries s.t. the rank of adj(G) + M + D is ≤ 2k.

When does every partition have rank(X ,Y) ≤ k?





1 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 1 0
1 0 0 1 1 0
0 0 0 0 0 0

G adj(G) + M + D

Theorem

If so, then there is a symmetric matrix M with ≤ f (k)
non-zero entries s.t. the rank of adj(G) + M + D is ≤ 2k.

When does every partition have rank(X ,Y) ≤ k?

Theorem

If so, then there is a symmetric matrix M with ≤ f (k)
non-zero entries s.t. adj(G) + M is a k-perturbation of 0.


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

=

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


rank 3


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


rank 3 rank 1 rank 2


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


rank 3 rank 1 rank 2

~v~vᵀ


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


rank 3 rank 1 rank 2

~v~vᵀ ~u~aᵀ +~a~uᵀ


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


rank 3 rank 1 rank 2

~v~vᵀ ~u~aᵀ +~a~uᵀ

∗ ×

Locally complementing (∗) at v replaces the induced
subgraph on the neighborhood of v by its complement.

v a b c d e



v 0 1 1 1 0 0
a 1 0 0 1 1 0
b 1 0 0 1 1 0
c 1 1 1 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G adj(G)

Locally complementing (∗) at v replaces the induced
subgraph on the neighborhood of v by its complement.

v a b c d e



v 0 1 1 1 0 0
a 1 0 0 1 1 0
b 1 0 0 1 1 0
c 1 1 1 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G adj(G)

Locally complementing (∗) at v replaces the induced
subgraph on the neighborhood of v by its complement.

v a b c d e



v 0 1 1 1 0 0
a 1 1 1 0 1 0
b 1 1 1 0 1 0
c 1 0 0 1 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G ∗ v adj(G) + ~v~vᵀ

Locally complementing (∗) at v replaces the induced
subgraph on the neighborhood of v by its complement.

v a b c d e



v 0 1 1 1 0 0
a 1 1 1 0 1 0
b 1 1 1 0 1 0
c 1 0 0 1 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G ∗ v adj(G) + ~v~vᵀ

Rank(X ,Y) is the same in G and G ∗ v .

Pivoting (×) on an edge va complements between three sets
and exchanges labels

v a b c d e



v 0 1 1 1 0 0
a 1 0 1 0 1 0
b 1 1 0 0 1 0
c 1 0 0 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G adj(G)

Pivoting (×) on an edge va complements between three sets
and exchanges labels.

v a b c d e



v 0 1 1 1 0 0
a 1 0 1 0 1 0
b 1 1 0 0 1 0
c 1 0 0 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G adj(G)

Pivoting (×) on an edge va complements between three sets
and exchanges labels.

v a b c d e



v 0 1 1 1 0 0
a 1 0 1 0 1 0
b 1 1 0 0 1 0
c 1 0 0 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G adj(G)

Pivoting (×) on an edge va complements between three sets
and exchanges labels.

v a b c d e



v 0 1 1 1 0 0
a 1 0 1 0 1 0
b 1 1 0 0 1 0
c 1 0 0 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G adj(G)

Pivoting (×) on an edge va complements between three sets
and exchanges labels.

v a b c d e



v 1 1 1 1 0 0
a 1 1 1 0 1 0
b 1 1 0 0 1 0
c 1 0 0 0 0 1
d 0 1 1 0 0 1
e 0 0 0 1 1 0

G ãdj(G)

Pivoting (×) on an edge va complements between three sets
and exchanges labels.

v a b c d e



v 1 1 1 0 1 0
a 1 1 1 1 0 0
b 1 1 0 1 0 0
c 0 1 1 0 1 1
d 1 0 0 1 0 1
e 0 0 0 1 1 0

G × va ãdj(G) + ~v~aᵀ +~a~vᵀ

Pivoting (×) on an edge va complements between three sets
and exchanges labels; G × va = G ∗ v ∗ a ∗ v = G ∗ a ∗ v ∗ a.

v a b c d e



v 1 1 1 0 1 0
a 1 1 1 1 0 0
b 1 1 0 1 0 0
c 0 1 1 0 1 1
d 1 0 0 1 0 1
e 0 0 0 1 1 0

G × va ãdj(G) + ~v~aᵀ +~a~vᵀ

Rank(X ,Y) is the same in G and G × va.

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v

3) G ×− v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

rankG (X ,Y) ≤ rankG ′(X ,Y) + k

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

Theorem

If every partition has rank(X ,Y) ≤ k, then there exists a
k-perturbation of G with ≤ f (k) edges.

A k-perturbation G ′ of G is obtained by adding k vertices
and then removing them:

1) G − v

2) G ∗− v = G ∗ v − v

3) G ×− v = G × va − v

Theorem

If every partition has rank(X ,Y) ≤ k, then there exists a
k-perturbation of G with ≤ f (k) edges.

Conjecture

Every rH-rank-connected graph with no H-vertex-minor is
a kH-perturbation of an intersection graph of chords on a
circle.

chords on a circle

−→

intersection graph

Thank you!

