Connectivity for adjacency matrices and vertex-minors

Rose McCarty

Department of Combinatorics and Optimization

Joint work with Jim Geelen and Paul Wollan

X V biclique

		Х			Υ	
Х	Γ0	0	0	1	1 1 0 0 0	1]
	0	0	0	1	1	1
	0	0	0	1	1	1
Y	1	1	1	0	0	0
	1	1	1	0	0	0
	1	1	1	0	0	0

X V biclique

X Y biclique

X Y biclique

		Х			Υ	
	Γ0	0 0 1 1 1	0	1	1	1]
Х	0	0	0	1	1	1
	0	0	0	1	1	1
	1	1	1	0	0	0
Υ	1	1	1	0	0	0
	[1	1	1	0	0	0

Matrices are over the binary field.

edge-connectivity = $\min_{X,Y} \#1$'s in adj[X, Y]

Rank(X, Y) is the rank of adj[X, Y].

Rank(X, Y) is the rank of adj[X, Y].

adjacency matrix

biclique

rank(X, Y) = rank(Y, X)

Rank(X, Y) is the rank of adj[X, Y].

biclique

adjacency matrix

rank(X, Y) = rank(Y, X)(Oum-Seymour)

rank-connectivity(S, T) =

rank-connectivity(S, T) = min_{X,Y} rank(X, Y)

$rank-connectivity(S, T) = min_{X,Y} rank(X, Y)$

A graph is k-rank-connected if rank $(X, Y) \ge \min(|X|, |Y|, k)$.

• Good measure of complexity for dense graphs.

rank-width/clique-width, etc.

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

(Menger)

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!
- **Pivot-minors** $(-v \text{ and } \times)$ essentially generalize minors.

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!
- **Pivot-minors** $(-v \text{ and } \times)$ essentially generalize minors.
- Vertex-minors allow all three $(-v, *, and \times)$.

- Good measure of complexity for dense graphs.
- Oum proved a generalization of Menger's Theorem!
- **Pivot-minors** $(-v \text{ and } \times)$ essentially generalize minors.
- Vertex-minors allow all three $(-\nu, *, and \times)$.

What is the structure of graphs with a forbidden **vertex-minor**?

When does every partition have $rank(X, Y) \le k$?

G

	Γ0	0	0	1	1	1]	
	0	0	0	1	1	1	
	0	0	0	1	1	1	
	1	1	1	0	0	0	
	1	1	1	0	0	0	
	1	1	1	0	0	0	
adj(G)							

When does every partition have $rank(X, Y) \le k$?

One reason could be that the rank of adj(G) is $\leq k$.

When does every partition have $rank(X, Y) \le k$?

One reason could be that the rank of adj(G) is $\leq k$.

One reason could be that the rank of adj(G) + D is $\leq k$.

One reason could be that the rank of adj(G) + D is $\leq k$.

Theorem

Theorem

Theorem

Theorem

Theorem

If so, then there is a symmetric matrix M with $\leq f(k)$ non-zero entries s.t. adj(G) + M is a k-perturbation of 0.

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
rank 3

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

rank 3 rank 1 rank 2

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

rank 3 rank 1 rank 2

vv^T

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

rank 3 rank 1 rank 2

 $\vec{v}\vec{v}^{\mathsf{T}}$ $\vec{u}\vec{a}^{\mathsf{T}}+\vec{a}\vec{u}^{\mathsf{T}}$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

rank 3 rank 1 rank 2

 $\vec{v}\vec{v}^{\mathsf{T}}$ $\vec{u}\vec{a}^{\mathsf{T}}+\vec{a}\vec{u}^{\mathsf{T}}$

* X

	V	а	b	С	d	е
V	٢0	1	1	1	0	0]
а	1	0	0	1	1	0
b	1	0	0	1	1	0
С	1	1	1	0	0	1
d	0	1	1	0	0	1
е	0 1 1 1 0 0	0	0	1	1	0]

	V	а	b	С	d	е
V	٢0	1	1	1	0	07
а	1	0	0	1	1	0
b	1	0	0	1	1	0
С	1	1	1	0	0	1
d	0	1	1	0	0	1
е	0 1 1 1 0 0	0	0	1	1	0]

	V	а	b	С	d	е
V	٢0	1 1 0 1 0	1	1	0	07
а	1	1	1	0	1	0
b	1	1	1	0	1	0
С	1	0	0	1	0	1
d	0	1	1	0	0	1
е	0	0	0	1	1	0]

 $\operatorname{adj}(G) + \vec{\mathbf{v}}\vec{\mathbf{v}}^{\mathsf{T}}$

Rank(X, Y) is the same in G and G * v.

	V	а	b	С	d	е
V	ГО	1	1	1	0	0]
а	1	0	1	0	1	0
b	1	1	0	0	1	0
с	1	0	0	0	0	1
d	0	1	1	0	0	1
е	0 1 1 1 0 0	0	0	1	1	0]

	V	а	b	С	d	е
V	ГО	1	1	1	0	0]
а	1	0	1	0	1	0
b	1	1	0	0	1	0
с	1	0	0	0	0	1
d	0	1	1	0	0	1
е	0 1 1 1 0 0	0	0	1	1	0]

	V	а	b	С	d	е
V	Γ0	1	1	1	0	0]
а	1	0	1	0	1	0
b	1	1	0	0	1	0
с	1	0	0	0	0	1
d	0	1	1	0	0	1
е	0 1 1 1 0 0	0	0	1	1	0]

	V	а	b	С	d	е
V	Γ0	1	1	1	0	0]
а	1	0	1	0	1	0
b	1	1	0	0	1	0
с	1	0	0	0	0	1
d	0	1	1	0	0	1
е	0 1 1 1 0 0	0	0	1	1	0]

V	а	b	С	d	е
[1	1	1	1	0	0]
1	1	1	0	1	0
1	1	0	0	1	0
1	0	0	0	0	1
0	1	1	0	0	1
0	0	0	1	1	0]
	V 1 1 1 1 0 0 0	$ \begin{array}{ccc} v & a \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} $	$ \begin{array}{cccc} v & a & b \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} $	$\begin{array}{c cccc} v & a & b & c \\ \hline 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{c ccccc} v & a & b & c & d \\ \hline 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{array}$

 $\widetilde{\operatorname{adj}}(G)$

	V	а	b	С	d	е	
V	Γ1	1	1	0	1	07	
а	1	1	1	1	0	0	
b	1	1	0	1	0	0	
с	0	1	1	0	1	1	
d	1	0	0	1	0	1	
е	1 1 0 1 0	0	0	1	1	0	

 $\widetilde{\operatorname{adj}}(G) + \overrightarrow{v}\overrightarrow{a}^{\mathsf{T}} + \overrightarrow{a}\overrightarrow{v}^{\mathsf{T}}$

Pivoting (×) on an edge va complements between three sets and exchanges labels; $G \times va = G * v * a * v = G * a * v * a$.

Rank(X, Y) is the same in G and $G \times va$.

- 1) **G v**
- 2) G * v
- 3) *G* ≚ *v*

1)
$$G - v$$

2) $G \pm v = G \ast v - v$
3) $G \pm v = G \times va - v$

1)
$$G - v$$

2) $G * v = G * v - v$
3) $G \times v = G \times va - v$

1)
$$G - v$$

2) $G * v = G * v - v$
3) $G \times v = G \times va - v$

1)
$$G - v$$

2) $G \pm v = G \ast v - v$
3) $G \pm v = G \times va - v$

1)
$$G - v$$

2) $G \stackrel{*}{=} v = G \ast v - v$
3) $G \stackrel{\times}{=} v = G \times va - v$

$\operatorname{rank}_{G}(X, Y) \leq \operatorname{rank}_{G'}(X, Y) + k$

1)
$$G - v$$

2) $G \stackrel{*}{=} v = G \ast v - v$
3) $G \stackrel{\times}{=} v = G \times va - v$

Theorem

If every partition has $rank(X, Y) \le k$, then there exists a *k*-perturbation of *G* with $\le f(k)$ edges.

1)
$$G - v$$

2) $G \stackrel{*}{=} v = G \ast v - v$
3) $G \stackrel{\times}{=} v = G \times va - v$

Theorem

If every partition has $rank(X, Y) \le k$, then there exists a *k*-perturbation of *G* with $\le f(k)$ edges.

Conjecture

Every r_H -rank-connected graph with no H-vertex-minor is a k_H -perturbation of an intersection graph of chords on a circle.

chords on a circle

intersection graph

Thank you!