Decomposing a graph into odd trails

Jim Geelen, Rose McCarty, and Paul Wollan

May 2019

When can the edge set of a graph be decomposed into *k* odd *a*-trails?

Immersion of

Flooding... into Η G

Flooding... into Η G

Flooding... into Η G

floods

Η

G

Signed Graphs

Immersion of

 (H, Σ_H)

(*G*, **Σ**)

Flooding...

into

 (H, Σ_H)

(*G*, **Σ**)

Flooding...

(*G*, **Σ**)

 (H, Σ_H)

 (H, Σ_H)

floods

(*G*, Σ')

with v sent to a.

Let $\nu(G, \Sigma, a)$ denote maximum k so that

with v sent to a.

If $\nu(G, \Sigma, a) = k$ then **♀** } k-2 floods а (H, E(H)) (G, Σ)

with v sent to a.

Structure of...

- graphs with no K_t-immersion
 (DeVos, McDonald, Mohar, Scheide 12; Wollan 13)
- signed graphs with no (K_t, E(K_t))-immersion (Churchley and Mohar 18)

Problem

Describe the structure of signed graphs that are not flooded by $(K_t, E(K_t))$.

Motivation: structure of graphs with a forbidden vertex minor

Theorem (Geelen, Kwon, McCarty, Wollan) For each circle graph H, every graph of sufficiently large rank-width has a graph isomorphic to H as a vertex minor.

Structure of...

- graphs with no K_t-immersion (DeVos, McDonald, Mohar, Scheide 12; Wollan 13)
- signed graphs with no (K_t, E(K_t))-immersion (Churchley and Mohar 18)

Corollary

If G is internally 4-edge-connected, then there exists a set of at most $3\nu(G, \Sigma, a)$ edges whose deletion removes all odd a-trails.

Corollary

If G is internally 4-edge-connected, then there exists a set of at most $3\nu(G, \Sigma, a)$ edges whose deletion removes all odd a-trails.

Corollary

If G is internally 4-edge-connected, then there exists a set of at most $3\nu(G, \Sigma, a)$ edges whose deletion removes all odd a-trails.

 $\nu(G, \Sigma, a) \leq k$

Corollary

If G is internally 4-edge-connected, then there exists a set of at most $3\nu(G, \Sigma, a)$ edges whose deletion removes all odd a-trails.

 $\nu(G, \Sigma, a) \leq k$

Re-signing at v

 (G, Σ)

(*G*, Σ')

Re-signing at v

(*G*, Σ')

(*G*, Σ")

Equality holds if trails are not required to flood. (Chudnovsky, Geelen, Gerards, Goddyn, Lohman, Seymour 04)

A component *C* of G - X is **odd** if $|\Sigma'(C)| + |\Sigma'(\delta(C))| \not\equiv \frac{|\delta(C)|}{2} \mod 2.$

Main Theorem For all signed graphs (G, Σ) and $a \in V(G)$, $\nu(G, \Sigma, a) = \min_{\Sigma', X} \Sigma'(X) + \frac{|\delta(X)|}{2} - odd(G, \Sigma', X).$

Notice that (G, Σ) floods (H, Σ_H) :

with v sent to awhere deg_H(v) = deg_G(a) and $|\Sigma_H| = \nu(G, \Sigma, a)$.

Notice that (G, Σ) floods (H, Σ_H) :

with v sent to awhere deg_H(v) = deg_G(a) and $|\Sigma_H| = \nu(G, \Sigma, a)$.

Define a matroid of rank $|E(H) \setminus \Sigma_H|$.

Theorem If $\nu(G, \Sigma_1, a) = \nu(G, \Sigma_2, a) = k$, then E(G)decomposes into k trails, all of which begin and end at a and are odd for **both** Σ_1 and Σ_2 .

Theorem If $\nu(G, \Sigma_1, a) = \nu(G, \Sigma_2, a) = k$, then E(G)decomposes into k trails, all of which begin and end at a and are odd for **both** Σ_1 and Σ_2 .

- Flooding by $(K_t, E(K_t))$
- Group-labelled graphs
- Erdös-Posá property for flooding by *a*-trails in a collection satisfying exchange property