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When can the edge set of a graph be
decomposed into k odd a-trails?
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E(G) decomposes into k odd a-trails
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Let (G, X, a) denote maximum k so that
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If v(G,%,a) = k then
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Structure of...

o graphs with no Ki-immersion
(DeVos, McDonald, Mohar, Scheide 12;
Wollan 13)

o signed graphs with no (K;, E(K;))-immersion
(Churchley and Mohar 18)

Problem

Describe the structure of signed graphs that are not
flooded by (K:, E(K:)).



Motivation: structure of graphs with a
forbidden vertex minor

Theorem (Geelen, Kwon, McCarty, Wollan)

For each circle graph H, every graph of sufficiently

large rank-width has a graph isomorphic to H as a
vertex minor.



Structure of...

o graphs with no K;-immersion
(DeVos, McDonald, Mohar, Scheide 12;
Wollan 13)

o signed graphs with no (K;, E(K;))-immersion
(Churchley and Mohar 18)

Corollary

If G is internally 4-edge-connected, then there exists
a set of at most 3v(G, X, a) edges whose deletion
removes all odd a-trails.
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Equality holds if trails are not required to flood.
(Chudnovsky, Geelen, Gerards, Goddyn, Lohman,
Seymour 04)
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A component C of G — X is odd if

(O + 1260 # X mod 2
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Main Theorem
For all signed graphs (G,X) and a € V(G),

v(G,%,a) = m|nZ(X)+ |5( I _ odd(G, %', X).

@



Notice that (G, X) floods (H, X p):

Vv

with v sent to a

where degy(v) = degg(a)
and |Xy| =v(G, X, a).



Notice that (G, X) floods (H, X p):
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where degy(v) = degg(a)
and |Xy| =v(G, X, a).

Define a matroid of rank |E(H) \ 4.
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All trails are odd for both > ; and 2,.



Theorem

Ifv(G,xq,a) =v(G, X, a) = k, then E(G)
decomposes into k trails, all of which begin and end
at a and are odd for both >; and .



Theorem

Ifv(G,xq,a) =v(G, X, a) = k, then E(G)
decomposes into k trails, all of which begin and end
at a and are odd for both >; and .



o Flooding by (K:, E(K}))
o Group-labelled graphs

o Erdos-Posa property for flooding by a-trails in a
collection satisfying exchange property



