The Grid Theorem for Rank-Width

Rose McCarty

Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

Department of Combinatorics and Optimization

SIAM Discrete Math 2018

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

The Grid Theorem [Robertson and Seymour, 86]

A family of graphs has unbounded tree-width iff it contains all planar graphs as minors.

Theorem [Geelen, Kwon, McCarty, Wollan, 18+]

A family of graphs has unbounded **rank-width** iff it contains all **circle graphs** as **vertex minors**.

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

The **vertex minors** of G are graphs obtained by

- deleting vertices
- local complementations

Locally complementing at $v \in V(G)$:

 $E(\mathbf{G^*v}) = E(G)\Delta\{\{x, y\} : x \neq y \text{ and } x, y \in N(v)\}$

G:

The **vertex minors** of G are graphs obtained by

- deleting vertices
- local complementations

Locally complementing at $v \in V(G)$:

 $E(\mathbf{G^*v}) = E(G)\Delta\{\{x, y\} : x \neq y \text{ and } x, y \in N(v)\}$

The **vertex minors** of G are graphs obtained by

- deleting vertices
- local complementations

Locally complementing at $v \in V(G)$:

 $E(\mathbf{G^*v}) = E(G)\Delta\{\{x, y\} : x \neq y \text{ and } x, y \in N(v)\}$

The **vertex minors** of G are graphs obtained by

- deleting vertices
- local complementations

Locally complementing at $v \in V(G)$:

 $E(\mathbf{G^*v}) = E(G)\Delta\{\{x, y\} : x \neq y \text{ and } x, y \in N(v)\}$

A circle graph is the intersection graph of chords on a circle.

• Circle graphs are vertex minor-closed. [Bouchet, 94]

Chord diagram for G

A circle graph is the intersection graph of chords on a circle.

• Circle graphs are vertex minor-closed. [Bouchet, 94]

G*v

For $A \subseteq V(G)$, rank(A) is the rank over \mathbb{GF}_2 of the submatrix of the adjacency matrix with rows A and columns \overline{A} .

rank(A) = rank(A), and rank_G(A) = rank_{G*v}(A)!
rank(A) large ⇔ |{N(v) ∩ A : v ∈ A}| large

For $A \subseteq V(G)$, rank(A) is the rank over \mathbb{GF}_2 of the submatrix of the adjacency matrix with rows A and columns \overline{A} .

rank(A) = rank(A), and rank_G(A) = rank_{G*v}(A)!
rank(A) large ⇔ |{N(v) ∩ A : v ∈ A}| large

Definition [Oum and Seymour, 06] The rank-width of G is

 $\min_{T} \max_{e \in E(T)} rank(A_e)$

- T subcubic tree with leaves(T) = V(G)
- A_e set of leaves of a component of T e
- rank-width(G) 1 \leq tree-width(G) [Oum, 07]

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

Theorem [Geelen, Kwon, McCarty, Wollan, 18+]

A family of graphs has unbounded rank-width iff it contains all circle graphs as vertex minors.

Proof starting points

 $S, T \subseteq V(G)$ disjoint and large \Rightarrow NO small rank separation

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

Lemma

$S, T \subseteq V(G)$ disjoint with NO small rank separation

 $\Rightarrow \exists H v.m. of G with$ • $H[S \cup T] = G[S \cup T]$ and • $X \subseteq V(G)$ large s.t.

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

Lemma

Applying Lemma

Applying Lemma

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan

 $\mathcal{R}_k \coloneqq \{G : \mathsf{rank-width}(G) \leq k\}$

Theorem [Dvořák and Král', 11] \mathcal{R}_k is χ -bounded.

Conjecture [Geelen]: v.m.-free graphs are χ -bounded.

Theorem [Courcelle, Makowsky, and Rotics, 99] Max-clique is in poly-time on \mathcal{R}_k .

Conjecture: Poly-time on v.m-free graphs.

Theorem [Oum, 08]

 \mathcal{R}_k has no infinite antichain.

Conjecture: There is no infinite antichain.

Thanks to rosschurchley.com for the Beamer theme.

Rose McCarty Joint with: Jim Geelen, O-joung Kwon, and Paul Wollan