8-Connected Graphs are 4-Ordered

Rose McCarty, Yan Wang, Xingxing Yu

School of Mathematics Georgia Institute of Technology

July 17, 2017

Rose McCarty, Yan Wang, Xingxing Yu 8-Connected Graphs are 4-Ordered

The Problem

Definition

A graph G is 4-ordered if for every $\{c_1, c_2, c_3, c_4\} \subseteq V(G)$, the graph contains:

A graph G is k-ordered if for every $\{c_1, c_2, \ldots, c_k\} \subseteq V(G)$, the graph contains:

Problem

What is the smallest integer f(k) so that every f(k)-connected graph is k-ordered?

Problem

What is the smallest integer f(k) so that every f(k)-connected graph is k-ordered?

Is a generalization of:

Theorem [Dirac, 60]

For every integer $k \ge 2$, if G is a k-connected graph and S is a set of k vertices in G, then G has a cycle containing every vertex in S. There exist (k - 1)-connected graphs without this property.

The Problem

For $k \leq 3$ there is only one cyclic ordering of k vertices. For k = 4:

A graph G is *k*-linked if for every $\{s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k\} \subseteq V(G)$, there exist vertex-disjoint paths P_1, P_2, \ldots, P_k so that P_i has ends s_i and t_i .

同 ト イ ヨ ト イ ヨ ト

A graph G is k-linked if for every $\{s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k\} \subseteq V(G)$, there exist vertex-disjoint paths P_1, P_2, \ldots, P_k so that P_i has ends s_i and t_i .

• 22k-connected graphs are k-linked.

[Bollobás and Thomason, 96]

A graph G is *k*-linked if for every $\{s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k\} \subseteq V(G)$, there exist vertex-disjoint paths P_1, P_2, \ldots, P_k so that P_i has ends s_i and t_i .

- 22*k*-connected graphs are *k*-linked.
 - [Bollobás and Thomason, 96]
- 12k-connected graphs are k-linked. [Kawarabayashi, Kostochka, and G. Yu, 06]

A graph G is *k*-linked if for every $\{s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k\} \subseteq V(G)$, there exist vertex-disjoint paths P_1, P_2, \ldots, P_k so that P_i has ends s_i and t_i .

- 22*k*-connected graphs are *k*-linked.
 - [Bollobás and Thomason, 96]
- 12k-connected graphs are k-linked.

[Kawarabayashi, Kostochka, and G. Yu, 06]

• 10k-connected graphs are k-linked.

[Thomas and Wollan, 05]

A B > A B >

● *f*(4) ≥ 6 [Faudree, 01]

A B + A B +

э

- *f*(4) ≥ 6 [Faudree, 01]
- $f(4) \ge 7$ [Ellingham, Plummer, and G. Yu, 11]

- *f*(4) ≥ 6 [Faudree, 01]
- $f(4) \ge 7$ [Ellingham, Plummer, and G. Yu, 11]

Theorem [R.M., Y. Wang, and X. Yu, 17+] (*In preparation*) Every 8-connected graph is 4-ordered.

What do these highly connected graphs that are not 4-ordered look like?

What do these highly connected graphs that are not 4-ordered look like?

This discussion will lead to:

A conjecture for a characterization of when a graph with fixed {c₁, c₂, c₃, c₄} has no cycle through them in order

What do these highly connected graphs that are not 4-ordered look like?

This discussion will lead to:

- A conjecture for a characterization of when a graph with fixed {c₁, c₂, c₃, c₄} has no cycle through them in order
- 2 Main idea of 8-connected implies 4-ordered proof

To show that $f(4) \ge 6$:

Theorem [Seymour, 80]

If G is a 4-connected graph with $\{c_1, c_2, c_3, c_4\} \subseteq V(G)$ such that G does not contain disjoint paths P_1 and P_3 so that P_i has ends c_i and c_{i+1} , then G can be embedded in the plane with c_1, c_3, c_2, c_4 on the outer face in that order.

To show that $f(4) \ge 7$:

Suppose that

Let v be the vertex in P closest to c_1 so that v is not in the planar part of the graph.

If v does not exist or is not in $P[c_1, c_2]$, then:

So v is in $P[c_1, c_2]$. Then:

So v is in $P[c_1, c_2]$. Then:

So v is in $P[c_1, c_2]$. Then:

So the graph

C1

Ć

 C_2

There are other possibilities:

There are other possibilities:

Theorem (informal statement) [X. Yu, 03]

If G is a 4-connected graph with $\{c_1, c_2, c_3, c_4\} \subseteq V(G)$ such that G does not contain a path P with ends c_1 and c_4 that encounters c_1, c_2, c_3, c_4 in order, then G consists of a planar graph attached to a ladder.

- **→** → **→**

▲ 同 ▶ → 三 ▶

æ

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

• Find illustrated subdivision where c_1, c_2, c_3, c_4 fixed.

- **→** → **→**

- ∢ ≣ ▶

э

- Find illustrated subdivision where c_1, c_2, c_3, c_4 fixed.
- **②** Choose one in a certain way that results in H 2-connected.

Proof Idea

Proof Idea

- **(**) Find illustrated subdivision where c_1, c_2, c_3, c_4 fixed.
- ② Choose one in a certain way that results in H 2-connected.
- 3 Then in fact *H* is 4-connected. So *H* is planar.

Do there exist 7 connected graphs that are not 4-ordered?

/⊒ > < ∃ >

Do there exist 7 connected graphs that are not 4-ordered?

Do there exist 7 connected graphs that are not 4-ordered?

Contact: rmccarty3@gatech.edu