8-Connected Graphs are 4-Ordered

Rose McCarty, Yan Wang, Xingxing Yu

School of Mathematics
Georgia Institute of Technology

July 17, 2017

Definition

A graph G is 4-ordered if for every $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\} \subseteq V(G)$, the graph contains:

Definition

A graph G is k-ordered if for every $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \subseteq V(G)$, the graph contains:

Problem

What is the smallest integer $f(k)$ so that every $f(k)$-connected graph is k-ordered?

Problem

What is the smallest integer $f(k)$ so that every $f(k)$-connected graph is k-ordered?

Is a generalization of:
Theorem [Dirac, 60]
For every integer $k \geq 2$, if G is a k-connected graph and S is a set of k vertices in G, then G has a cycle containing every vertex in S. There exist ($k-1$)-connected graphs without this property.

For $k \leq 3$ there is only one cyclic ordering of k vertices. For $k=4$:

Prior Work

Definition

A graph G is k-linked if for every
$\left\{s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq V(G)$, there exist vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ so that P_{i} has ends s_{i} and t_{i}.

Prior Work

Definition

A graph G is k-linked if for every $\left\{s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq V(G)$, there exist vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ so that P_{i} has ends s_{i} and t_{i}.

- 22k-connected graphs are k-linked.
[Bollobás and Thomason, 96]

Prior Work

Definition

A graph G is k-linked if for every
$\left\{s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq V(G)$, there exist vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ so that P_{i} has ends s_{i} and t_{i}.

- 22k-connected graphs are k-linked.
[Bollobás and Thomason, 96]
- $12 k$-connected graphs are k-linked.
[Kawarabayashi, Kostochka, and G. Yu, 06]

Prior Work

Definition

A graph G is k-linked if for every
$\left\{s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq V(G)$, there exist vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ so that P_{i} has ends s_{i} and t_{i}.

- $22 k$-connected graphs are k-linked.
[Bollobás and Thomason, 96]
- $12 k$-connected graphs are k-linked.
[Kawarabayashi, Kostochka, and G. Yu, 06]
- 10k-connected graphs are k-linked.
[Thomas and Wollan, 05]

Prior Work

For $k=4$, this gives us $f(4) \leq 40$. What about the lower bound?

Prior Work

For $k=4$, this gives us $f(4) \leq 40$. What about the lower bound?

- $f(4) \geq 6$ [Faudree, 01]

For $k=4$, this gives us $f(4) \leq 40$. What about the lower bound?

- $f(4) \geq 6$ [Faudree, 01]
- $f(4) \geq 7$ [Ellingham, Plummer, and G. Yu, 11]

Prior Work

For $k=4$, this gives us $f(4) \leq 40$. What about the lower bound?

- $f(4) \geq 6$ [Faudree, 01]
- $f(4) \geq 7$ [Ellingham, Plummer, and G. Yu, 11]

Theorem [R.M., Y. Wang, and X. Yu, 17+] (In preparation)
Every 8-connected graph is 4-ordered.

Characterizations

What do these highly connected graphs that are not 4-ordered look like?

Characterizations

What do these highly connected graphs that are not 4-ordered look like?

This discussion will lead to:
(1) A conjecture for a characterization of when a graph with fixed $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ has no cycle through them in order

Characterizations

What do these highly connected graphs that are not 4-ordered look like?

This discussion will lead to:
(1) A conjecture for a characterization of when a graph with fixed $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ has no cycle through them in order
(2) Main idea of 8 -connected implies 4 -ordered proof

Characterizations

To show that $f(4) \geq 6$:

Characterizations

Theorem [Seymour, 80]

If G is a 4-connected graph with $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\} \subseteq V(G)$ such that G does not contain disjoint paths P_{1} and P_{3} so that P_{i} has ends c_{i} and c_{i+1}, then G can be embedded in the plane with $c_{1}, c_{3}, c_{2}, c_{4}$ on the outer face in that order.

Characterizations

To show that $f(4) \geq 7$:

has no

Characterizations

Suppose that

has a path P

Characterizations

Let v be the vertex in P closest to c_{1} so that v is not in the planar part of the graph.

Characterizations

If v does not exist or is not in $P\left[c_{1}, c_{2}\right]$, then:

has a path P

Characterizations

So v is in $P\left[c_{1}, c_{2}\right]$. Then:

has a path P

Characterizations

So v is in $P\left[c_{1}, c_{2}\right]$. Then:

has a
path P

Characterizations

So v is in $P\left[c_{1}, c_{2}\right]$. Then:

has a path P

Characterizations

So the graph

has no

Characterizations

There are other possibilities:

Characterizations

There are other possibilities:

Characterizations

Theorem (informal statement) [X. Yu, 03]
If G is a 4-connected graph with $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\} \subseteq V(G)$ such that G does not contain a path P with ends c_{1} and c_{4} that encounters $c_{1}, c_{2}, c_{3}, c_{4}$ in order, then G consists of a planar graph attached to a ladder.

If no

Characterizations

Observation

Characterizations

Observation

Characterizations

Proof Idea

(1) Find illustrated subdivision where $c_{1}, c_{2}, c_{3}, c_{4}$ fixed.

Proof Idea

Let H be the induced graph on the set of all vertices of G except those in the $c_{3}-c_{2}$ cycle or $c_{1}-c_{4}$ cycle.

Proof Idea

Let H be the induced graph on the set of all vertices of G except those in the $c_{3}-c_{2}$ cycle or $c_{1}-c_{4}$ cycle.
(1) Find illustrated subdivision where $c_{1}, c_{2}, c_{3}, c_{4}$ fixed.
(2) Choose one in a certain way that results in H 2-connected.

Let H be the induced graph on the set of all vertices of G except those in the $c_{3}-c_{2}$ cycle or $c_{1}-c_{4}$ cycle.

Then H has no

Let H be the induced graph on the set of all vertices of G except those in the $c_{3}-c_{2}$ cycle or $c_{1}-c_{4}$ cycle.
(1) Find illustrated subdivision where $c_{1}, c_{2}, c_{3}, c_{4}$ fixed.
(2) Choose one in a certain way that results in H 2-connected.
(3) Then in fact H is 4 -connected. So H is planar.

Future Directions

Do there exist 7 connected graphs that are not 4 -ordered?

Do there exist 7 connected graphs that are not 4 -ordered?

Do there exist 7 connected graphs that are not 4 -ordered?

If no

then
looks
like

Contact: rmccarty3@gatech.edu

