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Conjecture
A class is degree-bounded ⇔ it does not contain graphs of
arbitrarily large average degree and girth.
Thomassen conjectured this for subgraph-closed classes 83.
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For which classes of graphs does there exist a
function f so that avgdeg(G) ≤ f (τ(G))?

Current approach gives:

2222
poly(τ)

Question
Does every degree-bounded class have a bounding function
that is a polynomial?
Motivated by problems on the chromatic number...
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No general bound, not even 2 ↑ω ω or...

(Image from “The New Turing Omnibus”)
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polynomial.
Would imply Erdös-Hajnal Conjecture for χ-bounded classes.
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polynomial.
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For which classes of graphs does there exist a
function f so that χ(G) ≤ f (ω(G))?

Both are open for the class with no induced:

Scott, Seymour, Spirkl: χ ≤ ωlog2(ω)

Conjecture (Esperet)
Every χ-bounded class has a χ-bounding function that is a
polynomial.
Would imply Erdös-Hajnal Conjecture for χ-bounded classes.
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It is not known if these classes are χ-bounded;
this is the Gyárfás–Sumner Conjecture.
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The class of 2-degenerate graphs contains all graphs
as induced subdivisions.

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran)
A class is degree-bounded ⇔ its graphs of girth ≥ 6 have
bounded degeneracy.
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The function must be exponential in d .
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For any d, every bipartite graph of avgdeg ≥ 2poly(d) has a
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Showed a lower bound of d3−o(1).
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Theorem

For any d and t, every bipartite graph of avgdeg ≥ 222poly(t)f (d)

has either Kt,t or an induced subgraph with avgdeg ≥ d and
no 4-cycles.

Based on a proof of Dellamonica, Koubek, Martin, & Rödl, 11.
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Question
Does every degree-bounded class have a bounding function
that is a polynomial?

Conjecture (Esperet)
Every χ-bounded class has a χ-bounding function that is a
polynomial.

Conjecture (Esperet)
A class is χ-bounded ⇔ it does not contain triangle-free
graphs of arbitrarily large chromatic number.

Are these conjectures consistent?



Thank you!


