Average degree and bicliques

Rose McCarty
Department of Combinatorics and Optimization
UNIVERSITY OF
WATERLOO

November 4th, 2021
Combinatorics Seminar at Birmingham

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

Biclique number $\tau(G):=$ maximum t so that G has $K_{t, t}$-subgraph

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

Biclique number $\tau(G):=$ maximum t so that G has $K_{t, t}$-subgraph

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

There exist graphs of arbitrarily large average degree and girth (Erdös).

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

There exist graphs of arbitrarily large average degree and girth (Erdös).

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that $\operatorname{mad}(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

All classes in this talk are closed under deleting vertices.

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Call such a class degree-bounded and f a bounding function.

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Conjecture
A class is degree-bounded \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth.

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Conjecture
A class is degree-bounded \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth.

Thomassen conjectured this for subgraph-closed classes 83.

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran) A class is degree-bounded \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth ≥ 6.

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran) A class is degree-bounded \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth ≥ 6.

Kühn and Osthus proved this for subgraph-closed classes.

For which classes of graphs does there exist a function f so that $\operatorname{avgdeg}(G) \leq f(\tau(G))$?

Question
Does every degree-bounded class have a bounding function that is a polynomial?

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Question
Does every degree-bounded class have a bounding function that is a polynomial?

For which classes of graphs does there exist a function f so that avgdeg $(G) \leq f(\tau(G))$?

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Motivated by problems on the chromatic number...

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Call such a class χ-bounded and f a χ-bounding function.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

There exist graphs of arbitrarily large chromatic number and girth (Erdös).

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Not every χ-bounded class is degree-bounded.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Not every degree-bounded class is χ-bounded.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Not every degree-bounded class is χ-bounded.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Not every degree-bounded class is χ-bounded.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Not every degree-bounded class is χ-bounded.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Pawlik, Kozik, Krawczyk Lasoń, Micek, Trotter, \& Walczak showed that they are not χ-bounded.

Not every degree-bounded class is χ-bounded.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Pawlik, Kozik, Krawczyk Lasoń, Micek, Trotter, \& Walczak showed that they are not χ-bounded.

All of their induced subgraphs with girth ≥ 5 have bounded average degree.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter, \& Walczak showed that they are not χ-bounded.

Conjecture (Esperet)

A class is χ-bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter, \& Walczak showed that they are not χ-bounded.

Conjecture (Esperet)

A class is χ-bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.
Rödl proved this for subgraph-closed classes.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter, \& Walczak showed that they are not χ-bounded.

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

No general bound, not even $2 \uparrow^{\omega} \omega$ or...

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

$$
\geq n^{\epsilon}
$$

Conjecture (Esperet)
Every χ-bounded class has a χ-bounding function that is a polynomial.

Would imply Erdös-Hajnal Conjecture for χ-bounded classes.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Both are open for the class with no induced:

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.
Would imply Erdös-Hajnal Conjecture for χ-bounded classes.

For which classes of graphs does there exist a function f so that $\chi(G) \leq f(\omega(G))$?

Both are open for the class with no induced:

Scott, Seymour, Spirkl: $\chi \leq \omega^{\log _{2}(\omega)}$

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.
Would imply Erdös-Hajnal Conjecture for χ-bounded classes.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has $\operatorname{avgdeg} \leq \operatorname{poly}(\tau)$.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has $\operatorname{avgdeg} \leq \operatorname{poly}(\tau)$.

It is not known if these classes are χ-bounded; this is the Gyárfás-Sumner Conjecture.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has $\operatorname{avgdeg} \leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak)
For any integer ℓ, the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has $\operatorname{avgdeg} \leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak)
For any integer ℓ, the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn \& Osthus)
For any graph H, the class of graphs with no induced subdivision of H has avgdeg $\leq \mathbf{f}(\tau)$.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has $\operatorname{avgdeg} \leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak)
For any integer ℓ, the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn \& Osthus)
For any graph H, the class of graphs with no induced subdivision of H has avgdeg $\leq \mathbf{f}(\tau)$.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has $\operatorname{avgdeg} \leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak)
For any integer ℓ, the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn \& Osthus)
For any graph H, the class of graphs with no induced subdivision of H has avgdeg $\leq \mathbf{f}(\tau)$.

Theorem (Scott, Seymour, \& Spirkl)
For any forest F, the class of graphs with no induced F has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak)
For any integer ℓ, the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn \& Osthus)

For any graph H, the class of graphs with no induced subdivision of H has avgdeg $\leq \mathbf{f}(\tau)$.

The class of 2-degenerate graphs contains all graphs as induced subdivisions.

The class of 2-degenerate graphs contains all graphs as induced subdivisions.

For any d, the class of d-degenerate graphs is degree-bounded.

The class of 2-degenerate graphs contains all graphs as induced subdivisions.

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran) A class is degree-bounded \Leftrightarrow its graphs of girth ≥ 6 have bounded degeneracy.
degree-bounded:

$\tau \leq$ avgdeg $\leq f(\tau)$
χ-bounded:

degree-bounded:

$\tau \leq \operatorname{avg} \operatorname{deg} \leq 2^{2^{2^{2^{\text {poll }}(\tau)}}}$
χ-bounded:

degree-bounded:

$\tau \leq \operatorname{avg} \operatorname{deg} \leq 2^{2^{2^{2^{\text {Poll }}(\tau)}}}$
χ-bounded:

Maybe both \leq polynomial.

Pause.
\square

Pause.

Pause.

Pause.

Pause.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {poly }}(\tau)}}}$

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol/(}}(\tau)}}}$

Proposition

For any d, every graph of avgdeg $\geq 2 d$ has a bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol/(}}(\tau)}}}$

Proposition

For any d, every graph of avgdeg $\geq 2 d$ has a bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{p o l}(\tau)}}}$

Proposition

For any d, every graph of avgdeg $\geq 2 d$ has a bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{22^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kwan, Letzter, Sudakov, \& Tran, 2020)
For any d and t, every graph of avgdeg $\geq 2^{d^{2} 2^{\text {poll(t) }}}$ has either K_{t} or an induced, bipartite subgraph with avgdeg $\geq d$.

The function must be exponential in d.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kühn \& Osthus, 04)
For any d, every bipartite graph of avgdeg $\geq 2^{2{ }^{\text {poll(d) }} \text { has a }}$ subgraph with avgdeg $\geq d$ and no 4 -cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Theorem (Kühn \& Osthus, 04)
For any d, every bipartite graph of avgdeg $\geq 2^{2{ }^{\text {poll(d) }} \text { has a }}$ subgraph with avgdeg $\geq d$ and no 4 -cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{22^{p o l}(\tau)}}}$
Theorem (Montgomery, Pokrovskiy, \& Sudakov, 20)
For any d, every bipartite graph of avgdeg $\geq 2^{\text {poly(d) }}$ has a subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{22^{p o l}(\tau)}}}$
Theorem (Montgomery, Pokrovskiy, \& Sudakov, 20)
For any d, every bipartite graph of avgdeg $\geq 2^{\text {poly(d) }}$ has a subgraph with avgdeg $\geq d$ and no 4-cycles.

Showed a lower bound of $d^{3-o(1)}$.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {poly }}(\tau)}}}$

Theorem

For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{p o l y}(\tau)}}}$

Theorem

For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {poly }}(\tau)}}}$

Theorem

For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {poly }}(\tau)}}}$

Theorem

For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{200 l(T)}}}$

Theorem

For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{200 l(}(\tau)}}$

Theorem
For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{200 l(T)}}}$

Theorem
For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{\text {pool(t)f(f(d) }}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{p o l(}(\tau)}}}$

Theorem

For any d and t, every bipartite graph of avgdeg $\geq 2^{2^{2 \operatorname{pol}(t) f(d)}}$ has either $K_{t, t}$ or an induced subgraph with avgdeg $\geq d$ and no 4-cycles.

Based on a proof of Dellamonica, Koubek, Martin, \& Rödl, 11.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Lemma
For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Lemma
For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$

Lemma

For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{22^{\text {Pol }}(\tau)}}}$

Lemma

For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{22^{\text {Pol }}(\tau)}}}$

Lemma

For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$

Lemma

For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{\left.2^{200 l(}\right)}}$

Lemma

For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Lemma
For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Obtaining/improving the bound avgdeg $\leq 2^{2^{2^{2^{\text {Pol }}(\tau)}}}$
Lemma
For any $r, \lambda \geq 1$, every bipartite graph of avgdeg $\geq f(r, \lambda)$ has an induced (r, λ)-subgraph.

This lets us apply (Füredi, 83).

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)
Every χ-bounded class has a χ-bounding function that is a polynomial.

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)
Every χ-bounded class has a χ-bounding function that is a polynomial.

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)
Every χ-bounded class has a χ-bounding function that is a polynomial.

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

Question

Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

Question

Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

This class is χ-bounded w/ polynomial bound (w/ Davies).

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

Question
Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

This class is χ-bounded, but is there a polynomial bound?

Question

Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

Conjecture (Esperet)

A class is χ-bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.

Question

Does every degree-bounded class have a bounding function that is a polynomial?

Conjecture (Esperet)

Every χ-bounded class has a χ-bounding function that is a polynomial.

Conjecture (Esperet)

A class is χ-bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.

Are these conjectures consistent?

Thank you!

