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Biclique number 7(G) =
maximum t so that G has K; ;-subgraph



For which classes of graphs does there exist a
function f so that mad(G) < f(7(G))?
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Conjecture

A class is degree-bounded < it does not contain graphs of
arbitrarily large average degree and girth.

Thomassen conjectured this for subgraph-closed classes 83.
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Kihn and Osthus proved this for subgraph-closed classes.
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For which classes of graphs does there exist a
function f so that avgdeg(G) < f(7(G))?

Current approach gives:
ol
22221) y(7)

Question

Does every degree-bounded class have a bounding function
that is a polynomial?

Motivated by problems on the chromatic number...
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Call such a class y-bounded
and f a y-bounding function.
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There exist graphs of arbitrarily large
chromatic number and girth (Erdos).
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have bounded average degree.
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No general bound, not even 2 ¥ w or...
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Would imply Erdés-Hajnal Conjecture for x-bounded classes.
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Scott, Seymour, Spirkl: y < w'°g()

Conjecture (Esperet)
Every x-bounded class has a x-bounding function that is a
polynomial.

Would imply Erdés-Hajnal Conjecture for y-bounded classes.
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For any forest F, the class of graphs with no induced F has
avgdeg < poly(7).

It is not known if these classes are y-bounded;
this is the Gyarfas—Sumner Conjecture.
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The class of 2-degenerate graphs contains all graphs
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as induced subdivisions.

For any d, the class of d-degenerate graphs is
degree-bounded.



The class of 2-degenerate graphs contains all graphs
as induced subdivisions.

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran)

A class is degree-bounded & its graphs of girth > 6 have
bounded degeneracy.



degree-bounded: x-bounded:

7 < avgdeg < f(7)
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TSandeg§222 w< x < fw)

Maybe both < polynomial.



Pause.
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For any d, every graph of avgdeg > 2d has a bipartite
subgraph with avgdeg > d.
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Obtaining/improving the bound avgdeg < 02"

Theorem (Kwan, Letzter, Sudakov, & Tran, 2020)

For any d and t, every graph of avgdeg > 292" has either

K: or an induced, bipartite subgraph with avgdeg > d.

The function must be exponential in d.
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For any d, every bipartite graph of avgdeg > 2 “ has a

subgraph with avgdeg > d and no 4-cycles.
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Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)

For any d, every bipartite graph of avgdeg > 2°°¥(?) has a
subgraph with avgdeg > d and no 4-cycles.

Showed a lower bound of d3—°().
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Theorem

oly(t)f(d)
For any d and t, every bipartite graph of avgdeg > 2 02"

has either K+ or an induced subgraph with avgdeg > d and
no 4-cycles.

Based on a proof of Dellamonica, Koubek, Martin, & Rédl, 11.
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Every x-bounded class has a x-bounding function that is a
polynomial.

This class is x-bounded w/ polynomial bound (w/ Davies).
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This class is y-bounded, but is there a polynomial bound?
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Question
Does every degree-bounded class have a bounding function
that is a polynomial?

Conjecture (Esperet)

Every x-bounded class has a x-bounding function that is a
polynomial.

Conjecture (Esperet)

A class is x-bounded <> it does not contain triangle-free
graphs of arbitrarily large chromatic number.

Are these conjectures consistent?



Thank you!



