Average degree and bicliques

Rose McCarty

Department of Combinatorics and Optimization

November 4th, 2021 Combinatorics Seminar at Birmingham

Biclique number $\tau(G) :=$ maximum *t* so that *G* has $K_{t,t}$ -subgraph

Biclique number $\tau(G) :=$ maximum *t* so that *G* has $K_{t,t}$ -subgraph

There exist graphs of arbitrarily large average degree and girth (Erdös).

There exist graphs of arbitrarily large average degree and girth (Erdös).

Call such a class **degree-bounded** and *f* a **bounding function**.

Conjecture

A class is **degree-bounded** \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth.

Conjecture

A class is **degree-bounded** \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth.

Thomassen conjectured this for subgraph-closed classes 83.

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran) A class is **degree-bounded** \Leftrightarrow it does not contain graphs of arbitrarily large average degree and **girth** ≥ 6 .

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran) A class is **degree-bounded** \Leftrightarrow it does not contain graphs of arbitrarily large average degree and **girth** ≥ 6 .

Kühn and Osthus proved this for subgraph-closed classes.

Question

Does every degree-bounded class have a bounding function that is a **polynomial**?

Question

Does every degree-bounded class have a bounding function that is a **polynomial**?

Question

Does every degree-bounded class have a bounding function that is a **polynomial**?

Motivated by problems on the chromatic number...

Call such a class χ -bounded and f a χ -bounding function.

There exist graphs of arbitrarily large chromatic number and girth (Erdös).

Not every χ -**bounded** class is **degree-bounded**.

Fig. 1. Segments, probes and roots.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

Fig. 1. Segments, probes and roots.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

All of their induced subgraphs with girth ≥ 5 have bounded average degree.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

Conjecture (Esperet)

A class is χ -bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

Conjecture (Esperet)

A class is χ -bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.

Rödl proved this for subgraph-closed classes.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

No general bound, not even 2 $\uparrow^{\omega} \omega$ or...

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a polynomial.

Would imply Erdös-Hajnal Conjecture for χ -bounded classes.

Both are open for the class with no induced:

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

Would imply Erdös-Hajnal Conjecture for χ -bounded classes.

Both are open for the class with no induced:

Scott, Seymour, Spirkl: $\chi \leq \omega^{\log_2(\omega)}$

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

Would imply Erdös-Hajnal Conjecture for χ -bounded classes.

It is not known if these classes are χ -**bounded**; this is the Gyárfás–Sumner Conjecture.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

$$\boxtimes \to \boxtimes \to \boxtimes$$

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

$$\boxtimes \to \boxtimes \to \boxtimes \to \boxtimes$$

The class of 2-degenerate graphs contains all graphs as **induced subdivisions**.

The class of 2-degenerate graphs contains all graphs as **induced subdivisions**.

For any *d*, the class of *d*-degenerate graphs is **degree-bounded**.

The class of 2-degenerate graphs contains all graphs as **induced subdivisions**.

Theorem (Uses a theorem of Kwan, Letzter, Sudakov, Tran) A class is **degree-bounded** \Leftrightarrow its graphs of **girth** \geq 6 have bounded degeneracy.

degree-bounded:

 $\tau \leq \operatorname{avgdeg} \leq f(\tau)$

χ -bounded:

 $\omega \leq \chi \leq f(\omega)$

degree-bounded:

χ -bounded:

 $\omega \leq \chi \leq f(\omega)$

degree-bounded: $\tau \leq \operatorname{avgdeg} \leq 2^{2^{2^{2^{poly}(\tau)}}}$

 χ -bounded:

 $\omega \leq \chi \leq f(\omega)$

Maybe both \leq polynomial.

Proposition

For any d, every graph of avgdeg $\geq 2d$ has a **bipartite** subgraph with avgdeg $\geq d$.

Proposition

For any d, every graph of avgdeg $\geq 2d$ has a **bipartite** subgraph with avgdeg $\geq d$.

Proposition

For any d, every graph of avgdeg $\geq 2d$ has a **bipartite** subgraph with avgdeg $\geq d$.

Theorem (Kwan, Letzter, Sudakov, & Tran, 2020)

Theorem (Kwan, Letzter, Sudakov, & Tran, 2020)

Theorem (Kwan, Letzter, Sudakov, & Tran, 2020)

For any d and t, every graph of $avgdeg \ge 2^{d^22^{\text{poly}(t)}}$ has either K_t or an induced, bipartite subgraph with $avgdeg \ge d$.

The function must be exponential in d.

Theorem (Kühn & Osthus, 04)

For any d, every bipartite graph of $avgdeg \ge 2^{2^{poly(d)}}$ has a subgraph with $avgdeg \ge d$ and **no** 4-cycles.

Theorem (Kühn & Osthus, 04)

For any d, every bipartite graph of $avgdeg \ge 2^{2^{poly(d)}}$ has a subgraph with $avgdeg \ge d$ and **no** 4-cycles.

Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)

For any d, every bipartite graph of $avgdeg \ge 2^{poly(d)}$ has a subgraph with $avgdeg \ge d$ and **no** 4-cycles.

Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)

For any d, every bipartite graph of $avgdeg \ge 2^{poly(d)}$ has a subgraph with $avgdeg \ge d$ and **no** 4-cycles.

Showed a lower bound of $d^{3-o(1)}$.

Theorem

Theorem

For any *d* and *t*, every bipartite graph of $avgdeg \ge 2^{2^{2^{poly(t)f(d)}}}$ has either $K_{t,t}$ or an induced subgraph with $avgdeg \ge d$ and no 4-cycles.

Based on a proof of Dellamonica, Koubek, Martin, & Rödl, 11.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.

Does every degree-bounded class have a bounding function that is a **polynomial**?

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

This class is χ -bounded w/ polynomial bound (w/ Davies).

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

This class is χ -bounded, but is there a **polynomial** bound?

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

Conjecture (Esperet)

A class is χ -bounded \Leftrightarrow it does not contain triangle-free graphs of arbitrarily large chromatic number.

Does every degree-bounded class have a bounding function that is a **polynomial**?

Conjecture (Esperet)

Every χ -bounded class has a χ -bounding function that is a **polynomial**.

Conjecture (Esperet)

A class is χ -**bounded** \Leftrightarrow it does not contain **triangle-free** graphs of arbitrarily large chromatic number.

Are these conjectures consistent?

Thank you!