Conjectures on vertex-minors

Rose McCarty

Department of Combinatorics and Optimization

September 29th, 2021

Joint work with Jim Geelen and Paul Wollan.

What are the "dense" analogs?

What are the "dense" analogs?

minors \rightarrow vertex-minors/pivot-minors

Well-Quasi-Ordering Theorem (Robertson & Seymour 2004) Every infinite set of graphs contains one that is isomorphic to a minor of another.

Kuratowski's Theorem

forbidden minors

Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to a **vertex-minor** *of another.*

Bouchet's Theorem

circle graphs

forbidden vertex-minors

Well-Quasi-Ordering Conjecture (Oum 2017?)

Every infinite set of graphs contains one that is isomorphic to a **pivot-minor** of another.

Geelen and Oum's Theorem

Well-Quasi-Ordering Conjecture (Oum 2017?)

Every infinite set of graphs contains one that is isomorphic to a **pivot-minor** of another.

planar graphs \longrightarrow circle graphs

Structure Theorem (Robertson & Seymour 2003)

For any proper minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into parts that "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

bounded genus ~> perturbed circle graphs

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

Ongoing project with Jim Geelen & Paul Wollan. Some also joint with O-joung Kwon & Sang-il Oum.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

Progress:

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

Progress:

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

Progress:

Flat Wall Theorem ~> Local Structure Theorem

Grid Theorem (Robertson & Seymour 1986)

For any planar graph H, every graph with tree-width $\geq f(H)$ has a minor isomorphic to H.

H minor of $G \implies \operatorname{tw}(H) \leq \operatorname{tw}(G)$.

Theorem (Geelen, Kwon, McCarty, & Wollan 2020) For any circle graph H, every graph with rank-width $\geq f(H)$ has a vertex-minor isomorphic to H.

comparability grid:

H vertex-minor of $G \implies \operatorname{rw}(H) \leq \operatorname{rw}(G)$.

G

- 1) vertex deletion and
- 2) local complementation

G

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- $1)\,$ vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- $1)\,$ vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

Locally equivalent graphs have the same cut-rank function.

separators \longrightarrow cut-rank

Locally equivalent graphs have the same cut-rank function.

For $X \subseteq V(G)$, **cut-rank**(X) is the rank over the binary field of...

(Oum-Seymour, Bouchet, Cunningham, Oum)

Locally equivalent graphs have the same cut-rank function.

For $X \subseteq V(G)$, **cut-rank**(X) is the rank over the binary field of...

(Oum-Seymour, Bouchet, Cunningham, Oum)

chord diagram

circle graph G

chord diagram

circle graph G

circle graph G * v

chord diagram

circle graph G * v * u

chord diagram

chord diagram

circle graph G * v * u

chord diagram

circle graph G * v * u - v

G forbids H-vertex-minor \longrightarrow p-perturbations of G forbid H'-vertex-minor

(where H' depends on p and H; uses lemma of Bouchet).

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

If a property holds for the following classes, then it is a reasonable conjecture about \mathcal{F} .

- classes of bounded clique-width/rank-width, and
- bounded-order perturbations of circle graphs.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

If a property holds for the following classes, then it is a reasonable conjecture about \mathcal{F} .

- classes of bounded clique-width/rank-width, and
- bounded-order perturbations of circle graphs.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

If a property holds for the following classes, then it is a reasonable conjecture about \mathcal{F} .

- classes of bounded clique-width/rank-width, and
- bounded-order **perturbations** of **circle graphs**.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

Conjectures: (for any fixed \mathcal{F})

• Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω(G) of G ∈ F in polynomial time (Geelen).

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω(G) of G ∈ F in polynomial time (Geelen).
- The chromatic number of G ∈ F is ≤ polynomial(ω(G)) (Davies; Esperet; Kim, Kwon, Oum, & Sivaraman).

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω(G) of G ∈ F in polynomial time (Geelen).
- The chromatic number of G ∈ F is ≤ polynomial(ω(G)) (Davies; Esperet; Kim, Kwon, Oum, & Sivaraman).
- Can $n^{1-\epsilon}$ -approximate the chromatic number of $G \in \mathcal{F}$.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω(G) of G ∈ F in polynomial time (Geelen).
- The chromatic number of G ∈ F is ≤ polynomial(ω(G)) (Davies; Esperet; Kim, Kwon, Oum, & Sivaraman).
- Can $n^{1-\epsilon}$ -approximate the chromatic number of $G \in \mathcal{F}$.
- $MBQC_{\mathcal{F}}$ can be efficiently simulated classically (Geelen).

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω(G) of G ∈ F in polynomial time (Geelen).
- The chromatic number of G ∈ F is ≤ polynomial(ω(G)) (Davies; Esperet; Kim, Kwon, Oum, & Sivaraman).
- Can $n^{1-\epsilon}$ -approximate the chromatic number of $G \in \mathcal{F}$.
- $MBQC_{\mathcal{F}}$ can be efficiently simulated classically (Geelen).
- For any fixed permutation graph H, first-order modelchecking is FPT (wrt formula length) on H-free graphs in F.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω(G) of G ∈ F in polynomial time (Geelen).
- The chromatic number of G ∈ F is ≤ polynomial(ω(G)) (Davies; Esperet; Kim, Kwon, Oum, & Sivaraman).
- Can $n^{1-\epsilon}$ -approximate the chromatic number of $G \in \mathcal{F}$.
- $MBQC_{\mathcal{F}}$ can be efficiently simulated classically (Geelen).
- For any fixed permutation graph H, first-order modelchecking is FPT (wrt formula length) on H-free graphs in F. Hliněný & Pokrývka proved for circle graphs via twin-width.

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

permutation graph

For any proper vertex-minor-closed class \mathcal{F} , each $G \in \mathcal{F}$ "decomposes" into bounded-order perturbations of circle graphs.

permutation graph

To **pivot** on an edge *uv*,

- 1) exchange the labels of u and v, and
- 2) complement between the three sets...

To **pivot** on an edge *uv*,

- 1) exchange the labels of u and v, and
- 2) complement between the three sets...

This is the same as G * v * u * v = G * u * v * u.

To **pivot** on an edge *uv*,

- 1) exchange the labels of u and v, and
- 2) complement between the three sets...

Pivot-minors are obtained by deleting vertices and pivoting.

This is the same as G * v * u * v = G * u * v * u.

Consider a graph with a spanning tree T, and its fundamental graph $\mathcal{F}(T)$. Pivoting corresponds to changing T.

planar graph

Consider a graph with a spanning tree T, and its fundamental graph $\mathcal{F}(T)$. Pivoting corresponds to changing T.

planar graph

fundamental graph $\mathcal{F}(\mathsf{T})$

Consider a graph with a spanning tree T, and its **fundamental** graph $\mathcal{F}(T)$. Pivoting corresponds to changing T.

planar graph

fundamental graph $\mathcal{F}(\mathsf{T})$

Pivot-minors?

Thank you!