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Well-Quasi-Ordering Theorem (Robertson & Seymour 2004)

Every infinite set of graphs contains one that is isomorphic to
a minor of another.

Kuratowski’s Theorem

planar graphs forbidden minors



Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to
a vertex-minor of another.

Bouchet’s Theorem

circle graphs forbidden vertex-minors



Well-Quasi-Ordering Conjecture (Oum 2017?)

Every infinite set of graphs contains one that is isomorphic to
a pivot-minor of another.

Geelen and Oum’s Theorem

circle graphs forbidden pivot-minors

Common generalization! (Bouchet 1988; de Fraysseix 1981)



Well-Quasi-Ordering Conjecture (Oum 2017?)

Every infinite set of graphs contains one that is isomorphic to
a pivot-minor of another.

planar graphs −→ circle graphs



Structure Theorem (Robertson & Seymour 2003)

For any proper minor-closed class F , each G ∈ F “decomposes”
into parts that “almost embed” in a surface of bounded genus.

Figure by Felix Reidl
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Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F , each G ∈ F
“decomposes” into bounded-order perturbations of circle graphs.

Ongoing project with Jim Geelen & Paul Wollan.
Some also joint with O-joung Kwon & Sang-il Oum.
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Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F , each G ∈ F
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tree-width −→ clique-width/rank-width



Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F , each G ∈ F
“decomposes” into bounded-order perturbations of circle graphs.

Progress:

Flat Wall Theorem

Flat Wall Theorem  Local Structure Theorem



Grid Theorem (Robertson & Seymour 1986)

For any planar graph H, every graph with tree-width ≥ f (H) has
a minor isomorphic to H.

grid:

H minor of G =⇒ tw(H) ≤ tw(G ).



Theorem (Geelen, Kwon, McCarty, & Wollan 2020)

For any circle graph H, every graph with rank-width ≥ f (H) has
a vertex-minor isomorphic to H.

comparability grid:

H vertex-minor of G =⇒ rw(H) ≤ rw(G ).
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G .
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G .

G ∗ v ∗ v = G



Locally equivalent graphs have the same cut-rank function.

separators −→ cut-rank
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A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation and
vertex-deletion.

chord diagram circle graph G ∗ v ∗ u − v
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from G by complementing on p sets.
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from G by complementing on p sets.



A p-perturbation of G is any graph that can be obtained
from G by complementing on p sets.

G forbids H-vertex-minor
−→

p-perturbations of G forbid H ′-vertex-minor

(where H ′ depends on p and H ; uses lemma of Bouchet).
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Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F , each G ∈ F
“decomposes” into bounded-order perturbations of circle graphs.

Conjectures: (for any fixed F)

Can determine if G ∈ F in polynomial time. (Oum)

Can determine the clique number ω(G ) of G ∈ F in
polynomial time (Geelen).

The chromatic number of G ∈ F is ≤ polynomial(ω(G ))
(Davies; Esperet; Kim, Kwon, Oum, & Sivaraman).

Can n1−ε-approximate the chromatic number of G ∈ F .

MBQCF can be efficiently simulated classically (Geelen).

For any fixed permutation graph H, first-order model-
checking is FPT (wrt formula length) on H-free graphs in F .
Hliněný & Pokrývka proved for circle graphs via twin-width.
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To pivot on an edge uv ,

1) exchange the labels of u and v , and

2) complement between the three sets...

−→

This is the same as G ∗ v ∗ u ∗ v = G ∗ u ∗ v ∗ u.

Pivot-minors are obtained by deleting vertices and pivoting.
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Figure by Felix Reidl

Pivot-minors?
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Thank you!


