Vertex-minors and immersions

Rose McCarty
Department of Combinatorics and Optimization
UNIVERSITY OF
WATERLOO

Joint work with Jim Geelen and Paul Wollan

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Like graph minors structure theorem of Robertson \& Seymour.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

A circle graph is the intersection graph of chords on a circle.

chord diagram

circle graph

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

A circle graph is the intersection graph of chords on a circle.

chord diagram

circle graph

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subgraph is a vertex-minor, but vertex-minors are quite different.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subgraph is a vertex-minor, but vertex-minors are quite different.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subgraph is a vertex-minor, but vertex-minors are quite different.

Conjecture (structure)

Every graph with no H -vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subdivision is also a vertex-minor.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.
G has no H-vertex-minor $\longrightarrow \bar{G}$ has no H^{\prime}-vertex-minor
(Bouchet)

G

\bar{G}

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Classes with no H-vertex-minor have strong Erdös-Hajnal property. (Chudnovsky-Oum via Chudnovsky-Scott-Seymour-Spirkl)

$$
|A|,|B| \geq \epsilon_{\mathrm{H}} \cdot|V(G)|
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Classes with no H-vertex-minor are χ-bounded.

chromatic number χ

clique number ω

$$
\chi \leq \mathrm{f}_{\mathrm{H}}(\omega)
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ-bounded.
(Davies-McCarty)

coloring

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ-bounded.
(Davies-McCarty)

stable set

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ-bounded.
(Davies-McCarty)

stable set

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ-bounded.
(Davies-McCarty)

stable set

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ-bounded.
(Davies-McCarty)

coloring

clique

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ-bounded.
(Davies-McCarty)

$$
\chi \leq 7 \omega^{2}
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ polyH (ω).
Asked by (Kim-Kwon-Oum-Sivaraman).

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ polyн (ω).

Asked by (Kim-Kwon-Oum-Sivaraman).

Follows from (structure) since "decomposing" works (Bonamy-Pilipczuk).

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H -vertex-minor has $\chi \leq$ polyн (ω).
Conjecture (WQO)
For $H_{1}, H_{2}, H_{3}, \ldots$, some H_{i} is a vertex-minor of $H_{j}, i<j$.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ polyн (ω).
Conjecture (WQO)
For $H_{1}, H_{2}, H_{3}, \ldots$, some H_{i} is a vertex-minor of $H_{j}, i<j$.
Conjecture (vertex-minor-testing)
Can test if n-vertex graph has an H-vertex-minor in $f(H) \cdot n^{c}$.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ polyн (ω).
Conjecture (WQO)
For $H_{1}, H_{2}, H_{3}, \ldots$, some H_{i} is a vertex-minor of $H_{j}, i<j$.
Conjecture (vertex-minor-testing)
Can test if n-vertex graph has an H-vertex-minor in $f(H) \cdot n^{c}$.
There is a common generalization of minors and vertex-minors.

The vertex-minors of a graph G are obtained by

1) vertex deletion and
2) local complementation.

G

The vertex-minors of a graph G are obtained by

1) vertex deletion and
2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

G

The vertex-minors of a graph G are obtained by

1) vertex deletion and
2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

$G * V$

The vertex-minors of a graph G are obtained by

1) vertex deletion and
2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

$G * V$

The vertex-minors of a graph G are obtained by

1) vertex deletion and
2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

$G * v * u$

The vertex-minors of a graph G are obtained by

1) vertex deletion and
2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

$$
G * v * u-u
$$

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G.

G

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G.

$G * v$

The vertex-minors of a graph G are the induced subgraphs of graphs that are locally equivalent to G.

$G * v * v=G$

Why local equivalence classes?

- graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-
(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Why local equivalence classes?

- graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-
(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Why local equivalence classes?

- graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-
(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)
Conjecture (Geelen)
When the graph states that can be prepared have no H-vertex-minor, $B Q P_{\mathrm{H}}=B P P$.

Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity

X
X
X

0 \& 0 \& 0 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 1 \& 1

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)

Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity

X
X
Y

0 \& 0 \& 0 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 1 \& 1

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)
adjacency matrix

Conjecture (structure)
Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity

X
X
Y

0 \& 0 \& 0 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 1 \& 1

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0

1 \& 1 \& 1 \& 0 \& 0 \& 0\end{array}\right]\)
adjacency matrix

Conjecture (structure)
Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity
- has a nice interpretation for circle graphs...

chord diagram

View the chord diagram as a 3-regular graph...

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

chord diagram

circle graph

tour graph

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

chord diagram

circle graph

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete $v . .$.

chord diagram

circle graph

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete $v . .$.

View the chord diagram as a 3-regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete $v . .$.

View the chord diagram as a 3 -regular graph and contract each of the chords to get the tour graph. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v, split it off in the tour graph.

In a 4-regular graph, there are 3 ways to split off v.

In a 4-regular graph, there are 3 ways to split off v. This is how we define immersions.

In a 4-regular graph, there are 3 ways to split off v. This is how we define immersions.

Theorem (Kotzig, Bouchet)
If H and G are 2-rank-connected circle graphs, then H is a vertex-minor of $G \Longleftrightarrow$ tour (H) immerses into tour (G).

Lemma (Bouchet)

If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is a vertex-minor of either $G-v, G * v-v$, or $G * v * u * v-v$ for each neighbour u of v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face,

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face,

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

If we only allow $2 / 3$ splits, then this generalizes minors of planar graphs (up to duality).

tour graph
Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow breaks the orientation.

Here is the other direction.

Take a planar graph.

Here is the other direction.

Take a planar graph. Add a vertex to each edge

Here is the other direction.

Take a planar graph. Add a vertex to each edge

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2 -coloring.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Here is the other direction.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the medial graph. The vertices of the planar graph give a 2-coloring. Choosing the other color gives the planar dual.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)
A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

planar graph

tour graph

circle graph

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)
A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)
A class of graphs has unbounded branch-width iff it has all planar graphs as minors.
planar graphs
branch-width
circle graphs
rank-width

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)
A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

Theorem (Geelen-Kwon-McCarty-Wollan)
A class of graphs has unbounded rank-width iff it has all circle graphs as vertex-minors.

Conjectured by Oum.

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

$$
X(G) \backslash X\left[0\right.
$$

(Oum-Seymour, Bouchet, Oum)

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

$\operatorname{cut}-\operatorname{rank}(X)=\operatorname{cut}-\operatorname{rank}(V(G) \backslash X)$
(Oum-Seymour, Bouchet, Oum)

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

$$
V(G)\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Cut-rank (X) is invariant under local complementation.
(Oum-Seymour, Bouchet, Oum)

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

$$
V(G)\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & . & 1 & 0 & 1 & 0 \\
1 & 1 & . & 0 & 1 & 0 \\
1 & 0 & 0 & . & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Cut-rank (X) is invariant under local complementation.
(Oum-Seymour, Bouchet, Oum)

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

$$
V(G)\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & . & 0 & 1 & 1 & 0 \\
1 & 0 & . & 1 & 1 & 0 \\
1 & 1 & 1 & . & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]-\mathrm{I}
$$

$G * v$

Cut-rank (X) is invariant under local complementation.
(Oum-Seymour, Bouchet, Oum)

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

Rank-width (G) is the minimum width of a subcubic tree T with leafs $V(G)$.

$\operatorname{width}(T)=\max _{e \in E(T)} \operatorname{cut}-\operatorname{rank}\left(X_{e}\right)$
(Oum-Seymour, Bouchet, Oum)

For $X \subseteq V(G)$, cut-rank (X) is the rank over the binary field of...

Rank-width (G) is the minimum width of a subcubic tree T with leafs $V(G)$.

Theorem (Geelen-Kwon-McCarty-Wollan)
A class of graphs has unbounded rank-width iff it has all circle graphs as vertex-minors.

circle graph

decomposition

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

$$
X(G) \backslash X\left[\right]
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are "almost" circle graphs.

$$
X(G) \backslash X\left[\right]
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

A graph G is a p-perturbation of G^{\prime} if the diagonal of $\operatorname{Adj}(G)+\operatorname{Adj}\left(G^{\prime}\right)$ can be filled in to rank $\leq p$.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

A graph G is a p-perturbation of G^{\prime} if the diagonal of $\operatorname{Adj}(G)+\operatorname{Adj}\left(G^{\prime}\right)$ can be filled in to rank $\leq p$.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

A graph G is a p-perturbation of G^{\prime} if the diagonal of $\operatorname{Adj}(G)+\operatorname{Adj}\left(G^{\prime}\right)$ can be filled in to rank $\leq p$.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

A graph G is a p-perturbation of G^{\prime} if the diagonal of $\operatorname{Adj}(G)+\operatorname{Adj}\left(G^{\prime}\right)$ can be filled in to rank $\leq p$.

$$
V(G)
$$

$$
V(G)\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are $p^{H^{-}}$-perturbations of circle graphs.

A graph G is a p-perturbation of G^{\prime} if the diagonal of $\operatorname{Adj}(G)+\operatorname{Adj}\left(G^{\prime}\right)$ can be filled in to rank $\leq p$.
$V(G)$

$$
V(G)\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.
Add in vertices for as long as possible.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.
Add in vertices for as long as possible.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.
Add in vertices for as long as possible.
When can we add in x ?

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.
Add in vertices for as long as possible.
When can we add in x ? (Think of "non-planarities".)

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph,

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \Longleftrightarrow$ we can shift so that $\left|\Sigma_{x}\right| \leq 2$ (Bouchet).

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \Longleftrightarrow$ we can shift so that $\left|\Sigma_{x}\right| \leq 2$ (Bouchet).

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \Longleftrightarrow$ we can shift so that $\left|\Sigma_{x}\right| \leq 2$ (Bouchet).

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \Longleftrightarrow$ we can shift so that $\left|\Sigma_{x}\right| \leq 2$ (Bouchet).

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \Longleftrightarrow$ we can shift so that $\left|\Sigma_{x}\right| \leq 2$ (Bouchet).

When can we add in x ?

- The neighborhood of x can be stored as $\Sigma_{x} \subseteq E$ (tour graph) of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \Longleftrightarrow$ we can shift so that $\left|\Sigma_{x}\right| \leq 2$ (Bouchet).

When can we add in x ?

Special case of a precise min-max theorem for partitioning an Eulerian group-labelled graph into rooted circuits.

When can we add in x ?

Special case of a precise min-max theorem for partitioning an Eulerian group-labelled graph into rooted circuits.

When can we add in x ?

Special case of a precise min-max theorem for partitioning an Eulerian group-labelled graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour) (for line graphs), except every edge must be used.

When can we add in x ?

Special case of a precise min-max theorem for partitioning an Eulerian group-labelled graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour) (for line graphs), except every edge must be used.

Signed graphs are \mathbb{Z}_{2}-labelled; for n vertices we have \mathbb{Z}_{2}^{n}-labelling.

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H vortex minor has $x \leq$ poly $H(\omega)$

Conjecture (vertex-minor-testing)
Can test if n-vertex graph has an H-vertex-minor in $f(H) \cdot n^{c}$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ poly $_{\boldsymbol{H}}(\omega)$.

Conjecture (vertex-minor-testing)
Can test if n-vortex graph has an H-vertex-minor in $f(H) \cdot n^{8}$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ poly $_{\boldsymbol{H}}(\omega)$.

Conjecture (WQO)
For $H_{1}, H_{2}, H_{3}, \ldots$, some H_{i} is a vertex-minor of $H_{j}, i<j$.

Conjecture (vertex-minor-testing)
Can test if n-vertex graph has an H-vertex-minor in $f(H) \cdot n$

Conjecture (structure)

Every graph with no H-vertex-minor "decomposes" into parts that are p_{H}-perturbations of circle graphs.

Conjecture (polynomial χ-boundedness)
Every graph with no H-vertex-minor has $\chi \leq$ poly (ω).

Conjecture (WQO)
For $H_{1}, H_{2}, H_{3}, \ldots$, some H_{i} is a vertex-minor of $H_{j}, i<j$.

Conjecture (vertex-minor-testing)
Can test if n-vertex graph has an H-vertex-minor in $f(H) \cdot n^{c}$.

Thank you!

