Vertex-minors and immersions

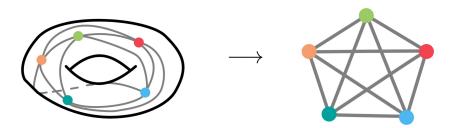
Rose McCarty

Department of Combinatorics and Optimization

Joint work with Jim Geelen and Paul Wollan

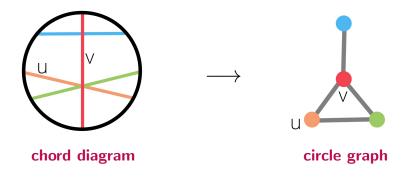
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Like graph minors structure theorem of Robertson & Seymour.



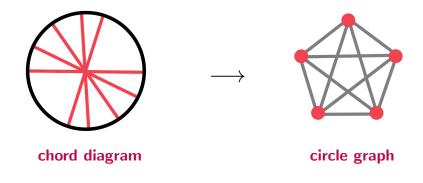
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

A circle graph is the intersection graph of chords on a circle.



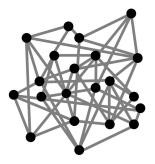
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

A circle graph is the intersection graph of chords on a circle.



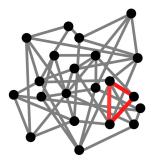
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subgraph is a **vertex-minor**, but **vertex-minors** are quite different.



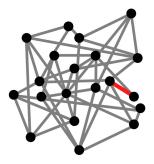
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every induced subgraph is a **vertex-minor**, but **vertex-minors** are quite different.

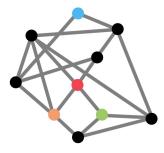


Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

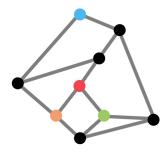
Every induced subgraph is a **vertex-minor**, but **vertex-minors** are quite different.



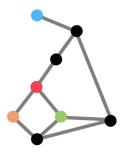
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.



Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.



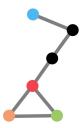
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.



Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.



Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

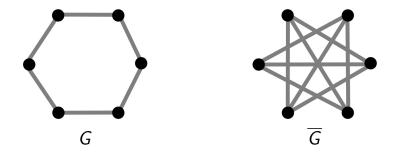


Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

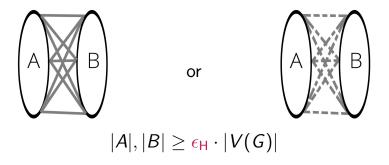
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

G has no H-vertex-minor $\longrightarrow \overline{G}$ has no H'-vertex-minor (Bouchet)



Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

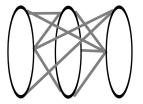
Classes with no *H*-vertex-minor have strong Erdös-Hajnal property. (Chudnovsky-Oum via Chudnovsky-Scott-Seymour-Spirkl)



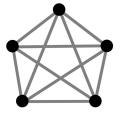
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Classes with no *H*-vertex-minor are χ -bounded.

(Davies)



chromatic number χ



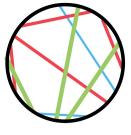
clique number ω

 $\chi \leq f_{H}(\omega)$

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ -bounded.

(Davies-McCarty)

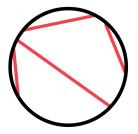


coloring

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ -bounded.

(Davies-McCarty)



stable set

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ -bounded.

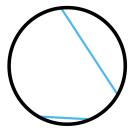
(Davies-McCarty)

stable set

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ -bounded.

(Davies-McCarty)

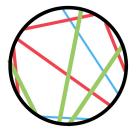


stable set

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ -bounded.

(Davies-McCarty)



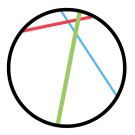
clique

coloring

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Circle graphs are polynomially χ -bounded.

(Davies-McCarty)



 $\chi \leq 7 \omega^2$

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (**polynomial** χ -**boundedness**)

Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Asked by (Kim-Kwon-Oum-Sivaraman).

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (**polynomial** χ -**boundedness**)

Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Asked by (Kim-Kwon-Oum-Sivaraman).

Follows from (**structure**) since "decomposing" works (Bonamy-Pilipczuk).

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (**polynomial** χ -**boundedness**)

Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (**WQO**)

For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (polynomial χ -boundedness) Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (**WQO**)

For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Conjecture (vertex-minor-testing)

Can test if n-vertex graph has an *H*-vertex-minor in $f(H) \cdot n^c$.

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Conjecture (**polynomial** χ -**boundedness**) Every graph with no *H*-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (WQO)

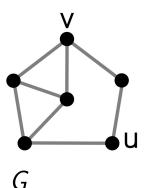
For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Conjecture (vertex-minor-testing)

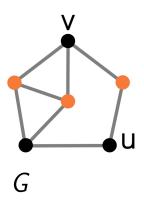
Can test if n-vertex graph has an *H*-vertex-minor in $f(H) \cdot n^c$.

There is a common generalization of minors and vertex-minors.

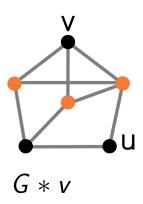
- 1) vertex deletion and
- 2) local complementation.



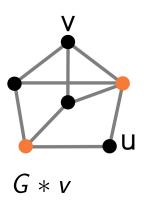
- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).



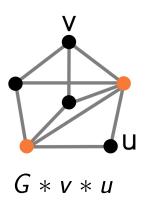
- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).



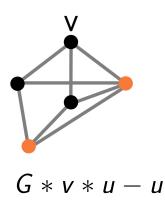
- $1)\,$ vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).



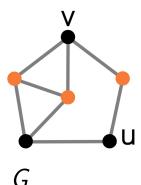
- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).



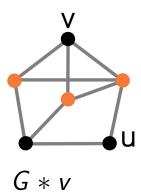
- $1)\,$ vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).



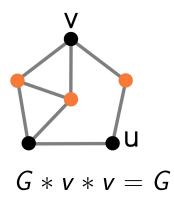
The **vertex-minors** of a graph G are the induced subgraphs of graphs that are **locally equivalent** to G.



The **vertex-minors** of a graph G are the induced subgraphs of graphs that are **locally equivalent** to G.



The **vertex-minors** of a graph G are the induced subgraphs of graphs that are **locally equivalent** to G.



• graph states in quantum computing

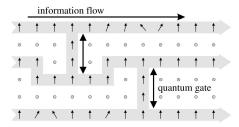


FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

• graph states in quantum computing

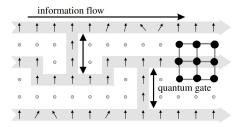


FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

• graph states in quantum computing

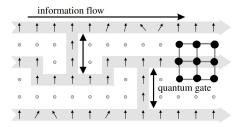


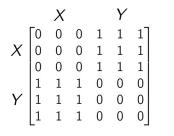
FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

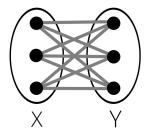
Conjecture (Geelen)

When the graph states that can be prepared have no H-vertex-minor, $BQP_{H} = BPP$.

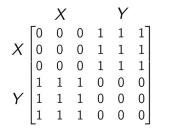
- graph states in quantum computing
- rank-connectivity

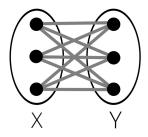


adjacency matrix



- graph states in quantum computing
- rank-connectivity



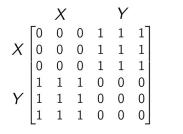


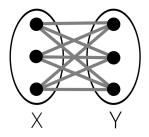
adjacency matrix

Conjecture (structure)

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

- graph states in quantum computing
- rank-connectivity



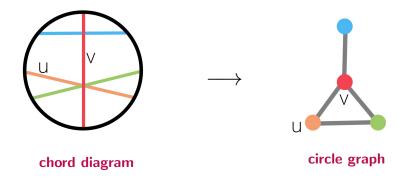


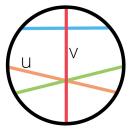
adjacency matrix

Conjecture (structure)

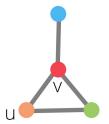
*Every graph with no H***-vertex-minor** "decomposes" *into parts that are* "almost" circle graphs.

- graph states in quantum computing
- rank-connectivity
- has a nice interpretation for circle graphs...



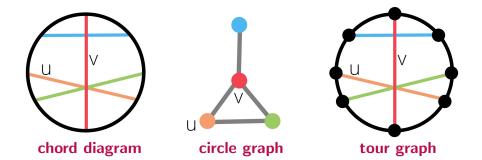


chord diagram

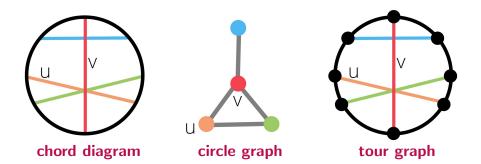


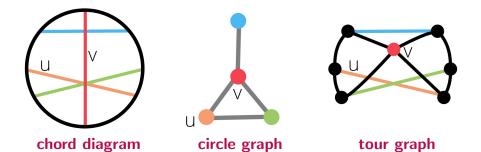
circle graph

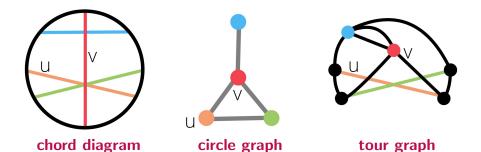
tour graph

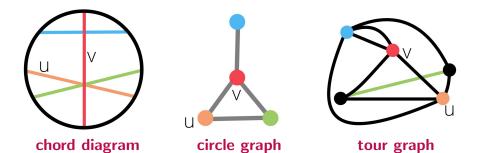


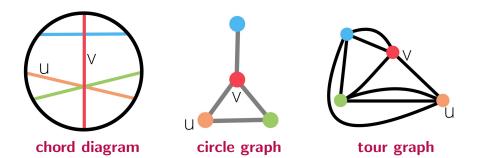
View the **chord diagram** as a 3-regular graph...

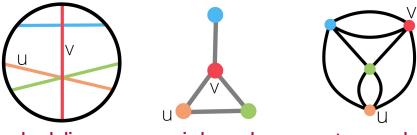






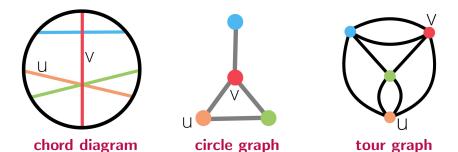




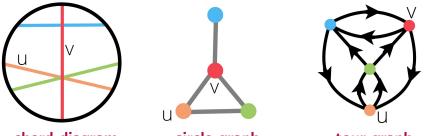


circle graph

tour graph



View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit.

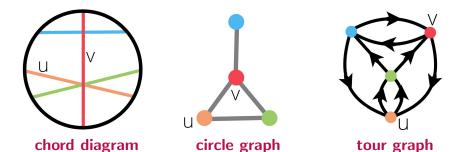


chord diagram

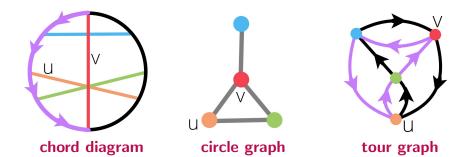
circle graph

tour graph

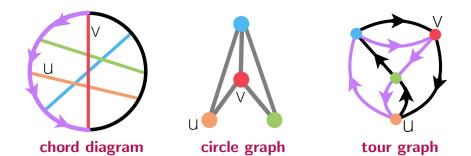
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit.



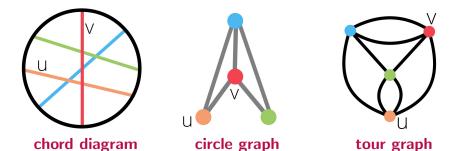
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.



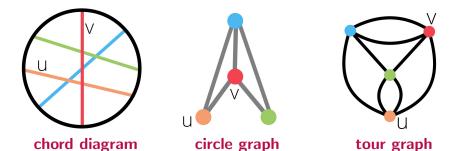
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.



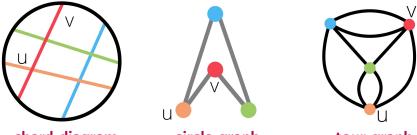
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.



View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.



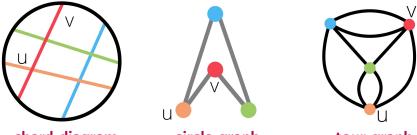
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u.



circle graph

tour graph

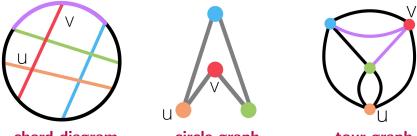
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u.



circle graph

tour graph

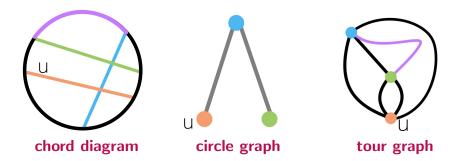
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...



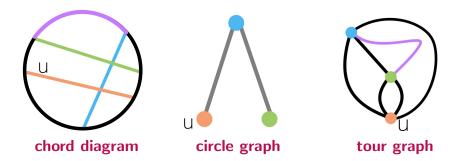
circle graph

tour graph

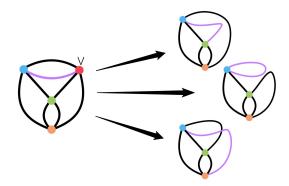
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...



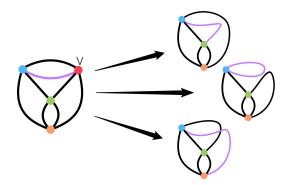
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...



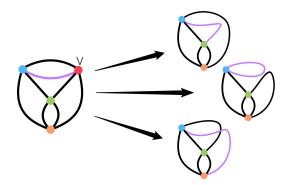
View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v, **split it off** in the **tour graph**.



In a 4-regular graph, there are 3 ways to **split off** v.



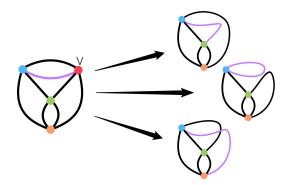
In a 4-regular graph, there are 3 ways to **split off** v. This is how we define **immersions**.



In a 4-regular graph, there are 3 ways to **split off** v. This is how we define **immersions**.

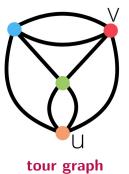
Theorem (Kotzig, Bouchet)

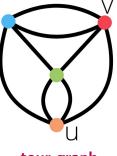
If H and G are 2-rank-connected circle graphs, then H is a vertex-minor of $G \iff tour(H)$ immerses into tour(G).



Lemma (Bouchet)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either G - v, G * v - v, or G * v * u * v - v for each neighbour u of v.



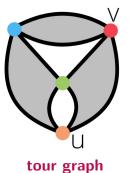


tour graph

Consider a 2-face-coloring.

tour graph

Consider a 2-face-coloring.



Consider a 2-face-coloring. Put a vertex in each black face,

tour graph

Consider a 2-face-coloring. Put a vertex in each black face,

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.



tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

tour graph

tour graph

tour graph

tour graph



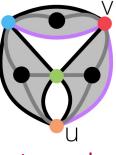
tour graph

tour graph



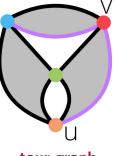
tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...



tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

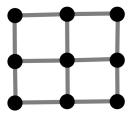


tour graph

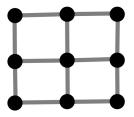
Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

tour graph

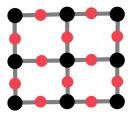
Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow breaks the orientation.



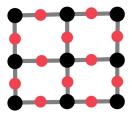
Take a planar graph.



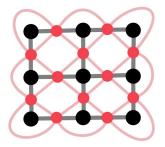
Take a planar graph. Add a vertex to each edge



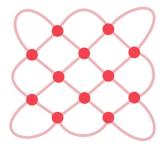
Take a planar graph. Add a vertex to each edge



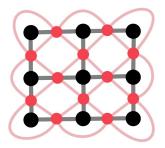
Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face.



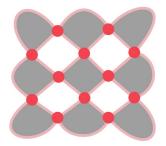
Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face.



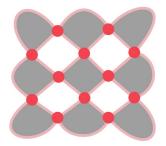
Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the **medial graph**.

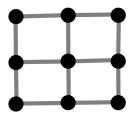


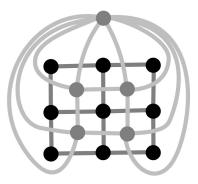
Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the **medial graph**. The vertices of the planar graph give a 2-coloring.

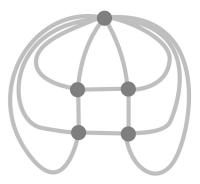


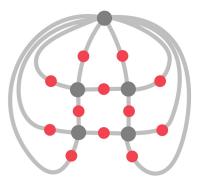
Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the **medial graph**. The vertices of the planar graph give a 2-coloring.

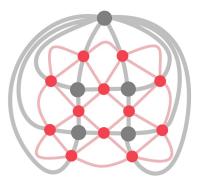


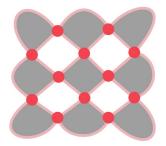








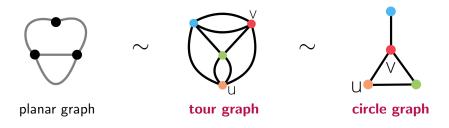




Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all planar graphs as minors.



Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

planar graphs	\sim	circle graphs
branch-width	\sim	rank-width

Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all circle graphs as vertex-minors.

Conjectured by Oum.

For $X \subseteq V(G)$, **cut-rank**(X) is the rank over the binary field of...

$$X \qquad V(G) \setminus X$$

$$X \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

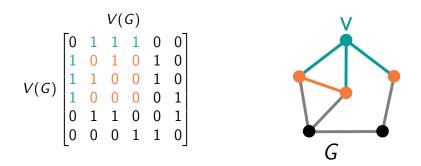


(Oum-Seymour, Bouchet, Oum)

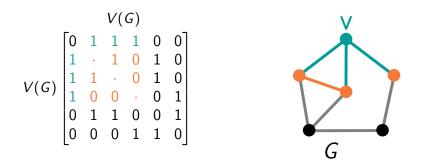
For $X \subseteq V(G)$, **cut-rank**(X) is the rank over the binary field of...

 $\operatorname{cut-rank}(X) = \operatorname{cut-rank}(V(G) \setminus X)$

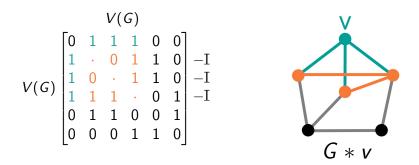
(Oum-Seymour, Bouchet, Oum)



Cut-rank(X) is invariant under local complementation.

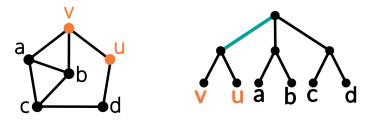


Cut-rank(X) is invariant under local complementation.



Cut-rank(X) is invariant under local complementation.

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

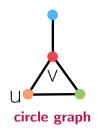


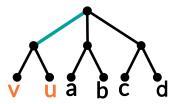
$$\mathsf{width}(T) = \max_{e \in E(T)} \mathsf{cut-rank}(X_e)$$

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

Theorem (Geelen-Kwon-McCarty-Wollan)

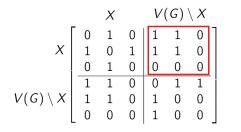
A class of graphs has unbounded rank-width iff it has all circle graphs as vertex-minors.

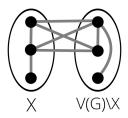




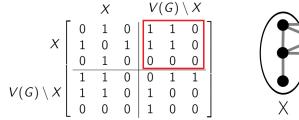
decomposition

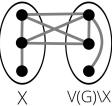
Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.



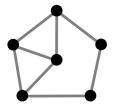


Every graph with no *H*-vertex-minor "decomposes" into parts that are "almost" circle graphs.

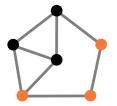




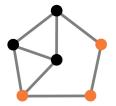
Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.



Every graph with no *H*-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

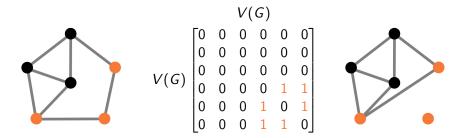


Every graph with no *H*-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

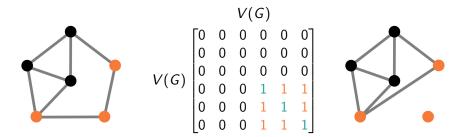




Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

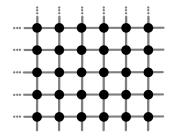


Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.



Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

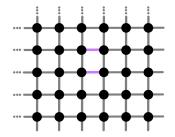
WMA our favorite circle graph is an induced subgraph.



Say one whose **tour graph** has a big grid subgraph.

Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

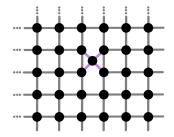
WMA our favorite circle graph is an induced subgraph.



Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible.

Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

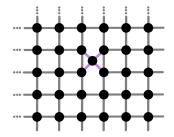
WMA our favorite circle graph is an induced subgraph.



Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible.

Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

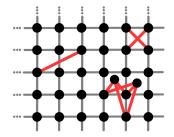
WMA our favorite circle graph is an induced subgraph.



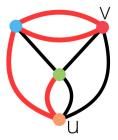
Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible. When can we add in x? (Think of "non-planarities".)

Every graph with no H-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

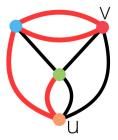
WMA our favorite circle graph is an induced subgraph.



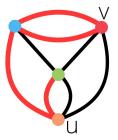
Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible. When can we add in x? (Think of "non-planarities".)



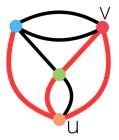
The neighborhood of x can be stored as Σ_x ⊆ E(tour graph) of even size.



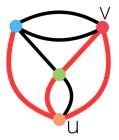
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph,



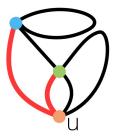
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.



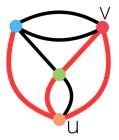
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.



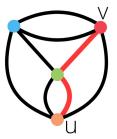
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".



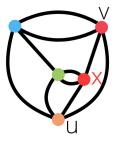
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".



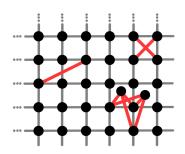
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).



- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).

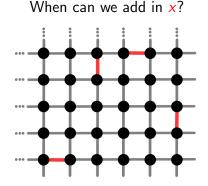


- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).

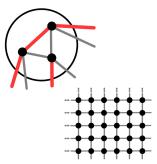


When can we add in \mathbf{x} ?

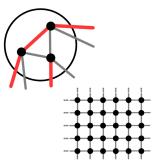
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can shift so that $|\Sigma_x| \le 2$ (Bouchet).



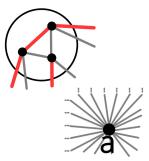
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).



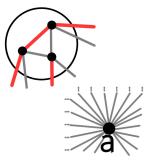
- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).



Special case of a precise min-max theorem for **partitioning** an Eulerian **group-labelled** graph into rooted circuits.

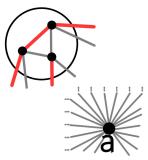


Special case of a precise min-max theorem for **partitioning** an Eulerian **group-labelled** graph into rooted circuits.



Special case of a precise min-max theorem for **partitioning** an Eulerian **group-labelled** graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour) (for line graphs), except every edge must be used.



Special case of a precise min-max theorem for **partitioning** an Eulerian **group-labelled** graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour) (for line graphs), except every edge must be used.

Signed graphs are \mathbb{Z}_2 -labelled; for *n* vertices we have \mathbb{Z}_2^n -labelling.

Every graph with no *H*-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

Conjecture (polynomial χ -boundedness) Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (**WQO**)

For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Conjecture (vertex-minor-testing)

Every graph with no *H*-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

Conjecture (polynomial χ -boundedness) Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (WQO)

For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Conjecture (vertex-minor-testing)

Every graph with no *H*-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

Conjecture (**polynomial** χ -boundedness) Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (WQO)

For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Conjecture (vertex-minor-testing)

Every graph with no *H*-vertex-minor "decomposes" into parts that are p_H -perturbations of circle graphs.

Conjecture (polynomial χ -boundedness) Every graph with no H-vertex-minor has $\chi \leq \text{poly}_{H}(\omega)$.

Conjecture (WQO)

For H_1, H_2, H_3, \ldots , some H_i is a vertex-minor of H_j , i < j.

Conjecture (vertex-minor-testing)

Thank you!