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Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

G has no H-vertex-minor −→ G has no H ′-vertex-minor

(Bouchet)

G G



Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Classes with no H-vertex-minor have strong Erdös-Hajnal property.

(Chudnovsky-Oum via Chudnovsky-Scott-Seymour-Spirkl)

or

|A|, |B | ≥ εH · |V (G )|



Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Classes with no H-vertex-minor are χ-bounded.

(Davies)

chromatic number χ clique number ω

χ ≤ fH(ω)
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Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Circle graphs are polynomially χ-bounded.

(Davies-McCarty)

χ ≤ 7ω2



Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Conjecture (polynomial χ-boundedness)

Every graph with no H-vertex-minor has χ ≤ polyH(ω).

Asked by (Kim-Kwon-Oum-Sivaraman).



Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Conjecture (polynomial χ-boundedness)

Every graph with no H-vertex-minor has χ ≤ polyH(ω).

Asked by (Kim-Kwon-Oum-Sivaraman).

Follows from (structure) since

“decomposing” works (Bonamy-Pilipczuk).
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Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Conjecture (polynomial χ-boundedness)

Every graph with no H-vertex-minor has χ ≤ polyH(ω).

Conjecture (WQO)

For H1,H2,H3, . . ., some Hi is a vertex-minor of Hj , i < j .

Conjecture (vertex-minor-testing)

Can test if n-vertex graph has an H-vertex-minor in f (H) ·nc .

There is a common generalization of minors and vertex-minors.
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The vertex-minors of a graph G are obtained by

1) vertex deletion and

2) local complementation (replace the induced subgraph on
the neighborhood of v by its complement).

G ∗ v ∗ u − u−u
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G .

G ∗ v ∗ v = G−u
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Why local equivalence classes?

graph states in quantum computing

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Conjecture (Geelen)

When the graph states that can be prepared have no
H-vertex-minor, BQPH = BPP.
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Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into parts
that are “almost” circle graphs.



Why local equivalence classes?

graph states in quantum computing

rank-connectivity

has a nice interpretation for circle graphs...

chord diagram

−→

circle graph
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chord diagram circle graph tour graph

View the chord diagram as a 3-regular graph and contract
each of the chords to get the tour graph. It has a specified
Eulerian circuit. Consider locally complementing at v then u.
To delete v , split it off in the tour graph.
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In a 4-regular graph, there are 3 ways to split off v . This is
how we define immersions.

Theorem (Kotzig, Bouchet)

If H and G are 2-rank-connected circle graphs, then H is a
vertex-minor of G ⇐⇒ tour(H) immerses into tour(G ).



Lemma (Bouchet)

If H is a vertex-minor of G and v ∈ V (G ) \ V (H), then H is a
vertex-minor of either G − v , G ∗ v − v , or G ∗ v ∗ u ∗ v − v
for each neighbour u of v .
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If we only allow 2/3 splits, then this generalizes minors of
planar graphs (up to duality).

tour graph

Consider a 2-face-coloring. Put a vertex in each black face,
and an edge between touching faces. Consider a split at v .
The split that we do not allow breaks the orientation.
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consecutive vertices in each face. This is the medial graph.
The vertices of the planar graph give a 2-coloring. Choosing
the other color gives the planar dual.
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Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all
planar graphs as minors.

planar graphs ∼ circle graphs

branch-width ∼ rank-width



Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all
planar graphs as minors.

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all
circle graphs as vertex-minors.

Conjectured by Oum.
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For X ⊆ V (G ), cut-rank(X ) is the rank over the binary field of...

V (G )

V (G )



0 1 1 1 0 0
1 · 0 1 1 0
1 0 · 1 1 0
1 1 1 · 0 1
0 1 1 0 0 1
0 0 0 1 1 0


G ∗ v

Cut-rank(X ) is invariant under local complementation.

(Oum-Seymour, Bouchet, Oum)

−I
−I
−I



For X ⊆ V (G ), cut-rank(X ) is the rank over the binary field of...

Rank-width(G ) is the minimum width of a subcubic tree T with
leafs V (G ).

width(T ) = max
e∈E(T )

cut-rank(Xe)

(Oum-Seymour, Bouchet, Oum)



For X ⊆ V (G ), cut-rank(X ) is the rank over the binary field of...

Rank-width(G ) is the minimum width of a subcubic tree T with
leafs V (G ).

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all circle
graphs as vertex-minors.

circle graph decomposition
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When can we add in x?

Special case of a precise min-max theorem for partitioning
an Eulerian group-labelled graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour)
(for line graphs), except every edge must be used.

Signed graphs are Z2-labelled; for n vertices we have Zn
2-labelling.



Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are pH-perturbations of circle graphs.

Conjecture (polynomial χ-boundedness)

Every graph with no H-vertex-minor has χ ≤ polyH(ω).

Conjecture (WQO)

For H1,H2,H3, . . ., some Hi is a vertex-minor of Hj , i < j .

Conjecture (vertex-minor-testing)

Can test if n-vertex graph has an H-vertex-minor in f (H) ·nc .
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Thank you!


