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Graphs arise from a variety of contexts:

The internet, social networks, distribution of
goods, circuit design, job applications, UML
diagrams, . . .

Permutations, groups, posets, knots, polyhedra,
CW complexes, . . .



We are interested in colourings of the nodes where
no edge joins two nodes of the same colour.
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How do you show that χ(G ) ≥ k?



The chromatic number χ(G ) is the minimum
number of colours needed to “separate” the edges.

To show that χ(G ) ≤ k , just give a good colouring.

How do you show that χ(G ) ≥ k?



A clique is a set of pairwise adjacent nodes.



A clique is a set of pairwise adjacent nodes.



A clique is a set of pairwise adjacent nodes.



A clique is a set of pairwise adjacent nodes.

The clique number ω(G ) is the largest size of a
clique.



A clique is a set of pairwise adjacent nodes.

The clique number ω(G ) is the largest size of a
clique.

χ(G ) ≥ ω(G )



This graph has clique number 2.



This graph has clique number 2.



This graph has clique number 2.



This graph has clique number 2.



This graph has clique number 2.



This graph has clique number 2,

but chromatic number 3.



This graph has clique number 2,

but chromatic number 4.



Theorem (Mycielski 1955)

For every integer k, there exists a graph G with
ω(G ) = 2 and χ(G ) ≥ k.

. . .



For what classes of graphs is χ
upper-bounded by a function of ω?

χ ≤ ω

χ ≤ ω3

χ ≤ 2ω

χ ≤ ωω
ωω

ωω

. . .

Such classes are called χ-bounded.



A class is hereditary if it is closed under

deleting vertices.

Conjecture (Esperet 2012)

For every hereditary class of graphs with

χ ≤ f (ω), there exists d so that χ ≤ ωd .

i.e. if χ ≤ ωω
ωω

ωω

then χ ≤ ω8 too!



Let’s look at the class of circle graphs.

Take a circle with some chords.

Make a node for each chord.

Make two nodes adjacent if their chords intersect.



Let’s look at the class of circle graphs.

Gyárfás 1985 χ ≤ ω2 · 22ω

Kostochka 1988 χ ≤ ω3 · 2ω

Kostochka-Kratochv́ıl 1997 χ ≤ 50 · 2ω



Let’s look at the class of circle graphs.

Theorem (Davies-M. 2019)

Every circle graph has χ ≤ 7ω2.



Bartosz Walczak, James Davies, me, Tomasz
Krawczyk
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Place points on it, and make a node for each point.

Make two nodes adjacent if the straight line
between them is contained inside the curve.

DKMW: χ ≤ 22ω Question: χ ≤ ωd???


