Colouring Graphs with Geometric Origins

Rose McCarty

September 2019

A **graph** is a mathematical formalization of a network consisting of nodes and edges.

A **graph** is a mathematical formalization of a network consisting of nodes and edges.

A **graph** is a mathematical formalization of a network consisting of nodes and edges.

Graphs arise from a variety of contexts:

- The internet, social networks, distribution of goods, circuit design, job applications, UML diagrams, . . .
- Permutations, groups, posets, knots, polyhedra, CW complexes, . . .

We are interested in **colourings** of the nodes where no edge joins two nodes of the same colour.

We are interested in **colourings** of the nodes where no edge joins two nodes of the same colour.

The chromatic number $\chi(G)$ is the minimum number of colours in such a colouring.

The **chromatic number** $\chi(G)$ is the minimum number of colours needed to "separate" the edges.

To show that $\chi(G) \leq k$, just give a good colouring. How do you show that $\chi(G) \geq k$? The **chromatic number** $\chi(G)$ is the minimum number of colours needed to "separate" the edges.

To show that $\chi(G) \leq k$, just give a good colouring. How do you show that $\chi(G) \geq k$?

The clique number $\omega(G)$ is the largest size of a clique.

The clique number $\omega(G)$ is the largest size of a clique. $\chi(G) \ge \omega(G)$

but chromatic number 3.

but chromatic number 4.

Theorem (Mycielski 1955)

For every integer k, there exists a graph G with $\omega(G) = 2$ and $\chi(G) \ge k$.

For what classes of graphs is χ upper-bounded by a function of ω ?

Such classes are called χ -**bounded**.

A class is **hereditary** if it is closed under deleting vertices.

Conjecture (Esperet 2012) For every hereditary class of graphs with $\chi \leq f(\omega)$, there exists d so that $\chi \leq \omega^d$.

Let's look at the class of **circle graphs**.

Take a circle with some chords. Make a node for each chord.

Make two nodes adjacent if their chords intersect.

Let's look at the class of **circle graphs**.

Gyárfás 1985	$\chi \leq \omega^2 \cdot 2^{2\omega}$
Kostochka 1988	$\chi \le \omega^3 \cdot 2^\omega$
Kostochka-Kratochvíl 1997	$\chi \leq$ 50 \cdot 2 $^{\omega}$

Let's look at the class of **circle graphs**.

Theorem (Davies-M. 2019) Every circle graph has $\chi \leq 7\omega^2$.

Bartosz Walczak, James Davies, me, Tomasz Krawczyk

Place points on it, and make a node for each point.

Place points on it, and make a node for each point. Make two nodes adjacent if the straight line between them is contained inside the curve.

Place points on it, and make a node for each point. Make two nodes adjacent if the straight line between them is contained inside the curve.

DKMW 2019+: $\chi \leq 2^{2\omega}$

Place points on it, and make a node for each point. Make two nodes adjacent if the straight line between them is contained inside the curve. DKMW: $\chi \leq 2^{2\omega}$ Question: $\chi \leq \omega^d$???