Colouring Graphs with Geometric Origins

Rose McCarty

September 2019

A graph is a mathematical formalization of a network consisting of nodes and edges.

$$
G=(V, E)
$$

A graph is a mathematical formalization of a network consisting of nodes and edges.

$$
G=(V, E)
$$

A graph is a mathematical formalization of a network consisting of nodes and edges.

$$
G=(V, E)
$$

Graphs arise from a variety of contexts:

- The internet, social networks, distribution of goods, circuit design, job applications, UML diagrams, ...
- Permutations, groups, posets, knots, polyhedra, CW complexes, ...

We are interested in colourings of the nodes where no edge joins two nodes of the same colour.

We are interested in colourings of the nodes where no edge joins two nodes of the same colour.

The chromatic number $\chi(G)$ is the minimum number of colours in such a colouring.

The chromatic number $\chi(G)$ is the minimum number of colours needed to "separate" the edges.

To show that $\chi(G) \leq k$, just give a good colouring. How do you show that $\chi(G) \geq k$?

The chromatic number $\chi(G)$ is the minimum number of colours needed to "separate" the edges.

To show that $\chi(G) \leq k$, just give a good colouring. How do you show that $\chi(G) \geq k$?

A clique is a set of pairwise adjacent nodes.

A clique is a set of pairwise adjacent nodes.

A clique is a set of pairwise adjacent nodes.

A clique is a set of pairwise adjacent nodes.

The clique number $\omega(G)$ is the largest size of a clique.

A clique is a set of pairwise adjacent nodes.

The clique number $\omega(G)$ is the largest size of a clique.

$$
\chi(G) \geq \omega(G)
$$

This graph has clique number 2.

This graph has clique number 2 .

This graph has clique number 2 .

This graph has clique number 2.

This graph has clique number 2 .

This graph has clique number 2,

but chromatic number 3 .

This graph has clique number 2,

but chromatic number 4.

Theorem (Mycielski 1955)

For every integer k, there exists a graph G with $\omega(G)=2$ and $\chi(G) \geq k$.

For what classes of graphs is χ upper-bounded by a function of ω ?

$$
\begin{gathered}
\chi \leq \omega \\
\chi \leq \omega^{3} \\
\chi \leq 2^{\omega} \\
\chi \leq \omega^{\omega^{\omega^{\omega}}}
\end{gathered}
$$

Such classes are called χ-bounded.

A class is hereditary if it is closed under deleting vertices.

Conjecture (Esperet 2012)

For every hereditary class of graphs with $\chi \leq f(\omega)$, there exists d so that $\chi \leq \omega^{d}$.

$$
\text { i.e. if } \chi \leq \omega^{\omega^{\omega^{\omega^{\omega}}}} \text { then } \chi \leq \omega^{8} \text { too! }
$$

Let's look at the class of circle graphs.

Take a circle with some chords.
Make a node for each chord.
Make two nodes adjacent if their chords intersect.

Let's look at the class of circle graphs.

Gyárfás 1985	$\chi \leq \omega^{2} \cdot 2^{2 \omega}$
Kostochka 1988	$\chi \leq \omega^{3} \cdot 2^{\omega}$
Kostochka-Kratochvíl 1997	$\chi \leq 50 \cdot 2^{\omega}$

Let's look at the class of circle graphs.

Theorem (Davies-M. 2019)
Every circle graph has $\chi \leq 7 \omega^{2}$.

Bartosz Walczak, James Davies, me, Tomasz Krawczyk

Consider a Jordan curve in the plane.

Consider a Jordan curve in the plane.

Place points on it, and make a node for each point.

Consider a Jordan curve in the plane.

Place points on it, and make a node for each point.
Make two nodes adjacent if the straight line between them is contained inside the curve.

Consider a Jordan curve in the plane.

Place points on it, and make a node for each point.
Make two nodes adjacent if the straight line between them is contained inside the curve.

$$
\text { DKMW 2019+: } \chi \leq 2^{2 \omega}
$$

Consider a Jordan curve in the plane.

Place points on it, and make a node for each point.
Make two nodes adjacent if the straight line between them is contained inside the curve.
DKMW: $\chi \leq 2^{2 \omega}$
Question: $\chi \leq \omega^{d}$???

