Vertex-minors and structure for dense graphs

Rose McCarty

Department of Combinatorics and Optimization

Joint work with Jim Geelen and Paul Wollan

Kuratowski's Theorem A graph is planar iff it has no K_5 or $K_{3,3}$ minor.

planar graphs

forbidden minors

Theorem (Robertson & Seymour 2004) Every minor-closed class has finitely many minimal forbidden minors.

planar graphs

forbidden minors

Theorem (Robertson & Seymour 2003) The graphs in any proper minor-closed class "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

Theorem (Robertson & Seymour 2003) The graphs in any proper minor-closed class "almost embed" in a surface of bounded genus.

Theory of "sparsity" (Nešetřil & Ossona de Mendez)

Theorem (Robertson & Seymour 2003) The graphs in any proper minor-closed class "almost embed" in a surface of bounded genus.

Bouchet's Theorem A graph is a circle graph iff it has no W_5 , \hat{W}_6 , or W_7 vertex-minor.

circle graphs

forbidden vertex-minors

Conjecture (Oum 2017)

Every **vertex-minor**-closed class has **finitely many** minimal forbidden vertex-minors.

circle graphs

forbidden vertex-minors

Geelen and Oum's Theorem A graph is a circle graph iff it has no W_5, W_6, \ldots pivot-minor.

circle graphs

forbidden pivot-minors

Geelen and Oum's Theorem A graph is a circle graph iff it has no W_5, W_6, \ldots pivot-minor.

circle graphs forbidden pivot-minors Common generalization! (Bouchet 1988; de Fraysseix 1981) Conjecture (Oum 2017)

Every **pivot-minor**-closed class has **finitely many** minimal forbidden pivot-minors.

circle graphs forbidden pivot-minors Common generalization! (Bouchet 1988; de Fraysseix 1981)

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle** graphs.

Ongoing project with Jim Geelen & Paul Wollan.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle** graphs.

Theorem (Geelen, Kwon, McCarty, Wollan) A class of graphs "fully decomposes" iff it does not have all circle graphs as vertex-minors.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Theorem (Geelen, Kwon, McCarty, Wollan) A class of graphs "fully decomposes" iff it does not have all circle graphs as vertex-minors.

Theorem (Geelen, McCarty, & Wollan) Relative to a "highly-connected" circle graph, the rest of the graph "almost attaches compatibly".

G

- 1) vertex deletion and
- 2) local complementation

G

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- 1) vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- $1)\,$ vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

- $1)\,$ vertex deletion and
- 2) local complementation (replace the induced subgraph on the neighborhood of v by its complement).

chord diagram

circle graph G

chord diagram

circle graph G

circle graph G * v

chord diagram

circle graph G * v * u

chord diagram

chord diagram

circle graph G * v * u

chord diagram

circle graph G * v * u - v

Why local equivalence classes?

• graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Why local equivalence classes?

• graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Why local equivalence classes?

• graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Conjecture (Geelen)

When the graph states that can be prepared have no H-vertex-minor, $BQP_{H} = BPP$.
Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity

adjacency matrix

Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity

adjacency matrix

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "**decompose**" into parts that are "almost" **circle graphs**.

Why local equivalence classes?

- graph states in quantum computing
- rank-connectivity
- has a nice interpretation for circle graphs...

chord diagram

circle graph

tour graph

View the **chord diagram** as a 3-regular graph...

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit.

chord diagram

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit.

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v.

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u.

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u.

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v...

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v, **split it off** in the **tour graph**.

In a 4-regular graph, there are 3 ways to **split off** v.

In a 4-regular graph, there are 3 ways to **split off** v. This is how we define **immersions**.

In a 4-regular graph, there are 3 ways to **split off** v. This is how we define **immersions**.

Theorem (Kotzig, Bouchet)

If H and G are 2-rank-connected circle graphs, then H is a vertex-minor of $G \iff tour(H)$ immerses into tour(G).

Lemma (Bouchet)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either G - v, G * v - v, or G * v * u * v - v for each neighbour u of v.

tour graph

Consider a 2-face-coloring.

tour graph

Consider a 2-face-coloring.

Consider a 2-face-coloring. Put a vertex in each black face,

tour graph

Consider a 2-face-coloring. Put a vertex in each black face,

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces.

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v.

tour graph

tour graph

tour graph

tour graph

tour graph

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow...

tour graph

Consider a 2-face-coloring. Put a vertex in each black face, and an edge between touching faces. Consider a split at v. The split that we do not allow breaks the orientation.

Take a planar graph.

Take a planar graph. Add a vertex to each edge

Take a planar graph. Add a vertex to each edge

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the **medial graph**.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the **medial graph**. The vertices of the planar graph give a 2-coloring.

Take a planar graph. Add a vertex to each edge and join consecutive vertices in each face. This is the **medial graph**. The vertices of the planar graph give a 2-coloring.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all planar graphs as minors.

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all circle graphs as vertex-minors.

Conjectured by Oum.

$$X \qquad V(G) \setminus X$$

$$X \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 $\operatorname{cut-rank}(X) = \operatorname{cut-rank}(V(G) \setminus X)$

Cut-rank(X) is invariant under local complementation.

Cut-rank(X) is invariant under local complementation.

Cut-rank(X) is invariant under local complementation.

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

$$\mathsf{width}(T) = \max_{e \in E(T)} \mathsf{cut-rank}(X_e)$$

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all circle graphs as vertex-minors.

decomposition

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

A graph G is a *p*-perturbation of G' if the diagonal of Adj(G) + Adj(G') can be filled in to rank $\leq p$.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

A graph G is a *p*-perturbation of G' if the diagonal of Adj(G) + Adj(G') can be filled in to rank $\leq p$.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

A graph G is a *p*-perturbation of G' if the diagonal of Adj(G) + Adj(G') can be filled in to rank $\leq p$.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

A graph G is a *p*-perturbation of G' if the diagonal of Adj(G) + Adj(G') can be filled in to rank $\leq p$.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

A graph G is a *p*-perturbation of G' if the diagonal of Adj(G) + Adj(G') can be filled in to rank $\leq p$.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

WMA our favorite circle graph is an induced subgraph.

Say one whose **tour graph** has a big grid subgraph.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

WMA our favorite circle graph is an induced subgraph.

Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

WMA our favorite circle graph is an induced subgraph.

Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

WMA our favorite circle graph is an induced subgraph.

Say one whose **tour graph** has a big grid subgraph. Add in vertices for as long as possible. When can we add in x?

The neighborhood of x can be stored as Σ_x ⊆ E(tour graph) of even size.

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph,

- The neighborhood of x can be stored as $\Sigma_x \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.

- The neighborhood of x can be stored as $\Sigma_x \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).

- The neighborhood of x can be stored as $\sum_{x} \subseteq E(\text{tour graph})$ of even size.
- We view it as a signed graph, so we can shift at vertices.
- To split off, we "add the parities".
- We can add $x \iff$ we can **shift** so that $|\Sigma_x| \le 2$ (Bouchet).

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Conjecture (Oum)

Every **vertex-minor**-closed class has **finitely many** minimal forbidden vertex-minors.

Conjecture (folklore)

Can test if an n-vertex graph has an H-vertex-minor in time $poly_{H}(n)$.

Conjecture (Esperet; see Davies)

The chromatic number of any graph with clique number ω and no *H*-vertex-minor is $\leq poly_{H}(\omega)$

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Conjecture (Oum)

Every **vertex-minor**-closed class has **finitely many** minimal forbidden vertex-minors.

Conjecture (folklore)

Can test if an n-vertex graph has an H-vertex-minor in time $poly_H(n)$.

Conjecture (Esperet; see Davies)

The chromatic number of any graph with clique number ω and no H-vertex-minor is $\leq poly_{H}(\omega)$

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Conjecture (Oum)

Every **vertex-minor**-closed class has **finitely many** minimal forbidden vertex-minors.

Conjecture (folklore)

Can test if an n-vertex graph has an H-vertex-minor in time $poly_{H}(n)$.

Conjecture (Esperet; see Davies) The chromatic number of any graph with clique number ω and no H-vertex-minor is $\leq poly_{\rm H}(\omega)$

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Conjecture (Oum)

Every **vertex-minor**-closed class has **finitely many** minimal forbidden vertex-minors.

Conjecture (folklore)

Can test if an *n*-vertex graph has an *H*-vertex-minor in time $poly_{H}(n)$.

Conjecture (Esperet; see Davies)

The chromatic number of any graph with clique number ω and no *H*-vertex-minor is $\leq poly_{H}(\omega)$

Thank you!