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Kuratowski's Theorem
A graph is planar iff it has no Ks or K33 minor.
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planar graphs forbidden minors



Theorem (Robertson & Seymour 2004)
Every minor-closed class has finitely many minimal

forbidden minors.
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Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “almost
embed” in a surface of bounded genus.
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The graphs in any proper minor-closed class “almost
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Bouchet's Theorem

A graph is a circle graph iff it has no W, W, or

W7 vertex-minor.

circle graphs forbidden vertex-minors




Conjecture (Oum 2017)
Every vertex-minor-closed class has finitely many

minimal forbidden vertex-minors.

circle graphs forbidden vertex-minors




Geelen and Oum’s Theorem

A graph is a circle graph iff it has no Ws, W, . . .

pivot-minor.
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(Bouchet 1988; de Fraysseix 1981)
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle
graphs.

Ongoing project with Jim Geelen & Paul Wollan.
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A class of graphs “fully decomposes” iff it does not
have all circle graphs as vertex-minors.



Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle
graphs.

Theorem (Geelen, Kwon, McCarty, Wollan)

A class of graphs “fully decomposes” iff it does not
have all circle graphs as vertex-minors.

Theorem (Geelen, McCarty, & Wollan)

Relative to a “highly-connected” circle graph, the
rest of the graph “almost attaches compatibly”.
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G.
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G.
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A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation and
vertex-deletion.
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A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation and
vertex-deletion.

u

chord diagram circle graph Gxvxu—v



Why local equivalence classes?

o graph states in quantum computing

information flow
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Conjecture (Geelen)

When the graph states that can be prepared have no
H-vertex-minor, BQPy = BPP.
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Why local equivalence classes?
o graph states in quantum computing
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class ‘decompose”
into parts that are “almost” circle graphs.



Why local equivalence classes?
@ graph states in quantum computing
@ rank-connectivity

@ has a nice interpretation for circle graphs...
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SR

chord diagram circle graph tour graph

View the chord diagram as a 3-regular graph and contract

each of the chords to get the tour graph. It has a specified

Eulerian circuit. Consider locally complementing at v then w.
To delete v, split it off in the tour graph.
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how we define immersions.
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In a 4-regular graph, there are 3 ways to split off v. This is
how we define immersions.

Theorem (Kotzig, Bouchet)

If H and G are 2-rank-connected circle graphs, then H is a
vertex-minor of G <= tour(H) immerses into tour(G).
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Lemma (Bouchet)

If H is a vertex-minor of G and v € V(G)\ V(H), then H is a
vertex-minor of either G — v, Gxv—v, or Gxvxuxv—v
for each neighbour u of v.
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If we only allow 2/3 splits, then this generalizes minors of
planar graphs (up to duality).

X
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U
tour graph

Consider a 2-face-coloring. Put a vertex in each black face,
and an edge between touching faces. Consider a split at v.
The split that we do not allow breaks the orientation.
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all
planar graphs as minors.

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all
circle graphs as vertex-minors.

Conjectured by Oum.
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Rank-width(G) is the minimum width of a subcubic tree T with
leafs V(G).
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For X C V(G), cut-rank(X) is the rank over the binary field of...

Rank-width(G) is the minimum width of a subcubic tree T with
leafs V(G).

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all circle
graphs as vertex-minors.
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WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.
Add in vertices for as long as possible.
When can we add in x7?
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Conjecture (folklore)
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Conjecture (Esperet; see Davies)

The chromatic number of any graph with clique number w and
no H-vertex-minor is < polyy(w)



Thank you!



