A combinatorial game for monadic stability

With Gajarský, Mählmann, Ohlmann, Ossona de Mendez, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, and Toruńczyk.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

A class of graphs is **monadically stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Comes from model theory; Baldwin and Shelah.

A class of graphs is **monadically stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Comes from model theory; Baldwin and Shelah. Idea is to use first-order logic to "exclude":

half-graph

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector.

To flip, select $X \subseteq V(G)$ and replace G[X] by its complement.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector.

To flip, select $X \subseteq V(G)$ and replace G[X] by its complement.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector.

To flip, select $X \subseteq V(G)$ and replace G[X] by its complement.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round: 1) If |V(G)| = 1 then Flipper wins in that round.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

$$\overset{\bullet}{\longrightarrow}$$

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

A class of graphs is monadically stable if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two player game: Flipper and Connector. In each round:

- 1) If |V(G)| = 1 then Flipper wins in that round.
- 2) Else, Connector picks a vertex v and we restrict to $B_r(v)$.
- 3) Then Flipper performs a flip.

Flipper wins the game on a class C if there exists $t \in \mathbb{N}$ so that Flipper wins in $\leq t$ rounds on each $G \in C$.

Theorem (Robertson, Seymour, Thomas)

A class of graphs is **linklessly embeddable** if and only if it contains no minor in the Petersen family.

- R. McCarty and R. Thomas. *The extremal function for bipartite linklessly embeddable graphs*. Combinatorica, Volume 39, pp. 1081–1104, 2019.
- R. McCarty. The extremal function and Colin de Verdière graph parameter. Electron. J. Combin., 25(2):P2.32, 2018.

Theorem (Robertson, Seymour, Thomas)

A class of graphs is linklessly embeddable if and only if it contains no minor in the **Petersen family**.

- R. McCarty and R. Thomas. The extremal function for bipartite linklessly embeddable graphs. Combinatorica, Volume 39, pp. 1081–1104, 2019.
- R. McCarty. The extremal function and Colin de Verdière graph parameter. Electron. J. Combin., 25(2):P2.32, 2018.

Theorem (Dvořák, Král', Thomas)

First-order model-checking is fixed-parameter tractable on any class of bounded expansion.

Theorem (Dvořák, Král', Thomas)

First-order model-checking is fixed-parameter tractable on any class of **bounded expansion**.

For each $r \in \mathbb{N}$, there exists $t \in \mathbb{N}$ so that no graph with average degree > t is an *r*-shallow minor of any graph in C.

Theorem (Grohe, Kreutzer, Siebertz)

First-order model-checking is fixed-parameter tractable on any class which is **nowhere dense**.

For each $r \in \mathbb{N}$, there exists $t \in \mathbb{N}$ so that K_t is not an *r*-shallow minor of any graph in C.

Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk) *First-order model-checking is fixed-parameter tractable on any class which is* **monadically stable**.

Recall that we use first-order logic to "exclude":

half-graph

A class is nowhere dense if and only if it is monadically stable and forbids a $K_{t,t}$ -subgraph for some $t \in \mathbb{N}$.

A class is nowhere dense if and only if it is monadically stable and forbids a $K_{t,t}$ -subgraph for some $t \in \mathbb{N}$.

So our main theorem

Theorem

A class of graphs is **monadically stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

A class is nowhere dense if and only if it is monadically stable and forbids a $K_{t,t}$ -subgraph for some $t \in \mathbb{N}$.

So our main theorem

Theorem

A class of graphs is **monadically stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

is like

Theorem (Grohe, Kreutzer, Siebertz)

A class of graphs is **nowhere dense** if and only if Splitter wins the radius-r splitter game for each $r \in \mathbb{N}$.

A class is nowhere dense if and only if it is monadically stable and forbids a $K_{t,t}$ -subgraph for some $t \in \mathbb{N}$.

So our main theorem

Theorem

A class of graphs is **monadically stable** if and only if Flipper wins the radius-r flipper game for each $r \in \mathbb{N}$.

is like

Theorem (Grohe, Kreutzer, Siebertz)

A class of graphs is **nowhere dense** if and only if Splitter wins the radius-r splitter game for each $r \in \mathbb{N}$.

but for classes that are allowed to be "dense".

Formulas in first-order logic are obtained as follows. 1) $x \operatorname{adj} y$ and x = y are formulas.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg\phi,\,\phi\wedge\psi,\,\ldots.$
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

$$\phi \coloneqq \exists x \forall y (y = x) \lor (y \text{ adj } x)$$

says that there is a dominating vertex.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

$$\phi(x) \coloneqq \forall y(y = x) \lor (y \text{ adj } x)$$

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

$$\phi(x) \coloneqq \forall y(y = x) \lor (y \text{ adj } x)$$

For $v \in V(G)$, $\phi(v)$ says that v is a dominating vertex.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg \phi$, $\phi \land \psi$,
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables. If ϕ is true for *G*, we say *G* **models** ϕ or write $G \models \phi$.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg\phi,\,\phi\wedge\psi,\,\ldots.$
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables. If ϕ is true for *G*, we say *G* **models** ϕ or write $G \models \phi$.

Naive algorithm for k-vertex-dominating set: $\mathcal{O}(n^k)$.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg\phi,\,\phi\wedge\psi,\,\ldots.$
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables. If ϕ is true for *G*, we say *G* **models** ϕ or write $G \models \phi$.

Naive algorithm for k-vertex-dominating set: $\mathcal{O}(n^k)$. Naive algorithm for determining if $G \models \phi$: $\mathcal{O}(n^{|\phi|})$.

- 1) $x \operatorname{adj} y$ and x = y are formulas.
- 2) If ϕ and ψ are formulas, then so are $\neg\phi,\,\phi\wedge\psi,\,\ldots.$
- 3) If ϕ is a formula, then so is $\exists x \phi$ and $\forall x \phi$.

A **sentence** is a formula ϕ with no free variables. If ϕ is true for *G*, we say *G* **models** ϕ or write $G \models \phi$.

Naive algorithm for k-vertex-dominating set: $\mathcal{O}(n^k)$. Naive algorithm for determining if $G \models \phi$: $\mathcal{O}(n^{|\phi|})$.

FO model-checking is FPT on C if there exists $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{R}$ so that the problem can be solved in time $f(|\phi|)n^c$.

Recall that a class is **monadically stable** if half-graphs are "excluded via" first-order logic.

 $G \in \mathcal{C}$

$$\phi(\mathbf{x},\mathbf{y}) \coloneqq \neg \mathbf{x} \operatorname{adj} \mathbf{y}$$

 $G \in \mathcal{C}$

$$\phi(x, y) \coloneqq (\neg x \text{ adj } y) \land (c(x) \neq c(y))$$

 $G \in \mathcal{C}$

$$\phi(x,y) \coloneqq (\neg x \text{ adj } y) \land (c(x) \neq c(y))$$

 $\phi(x,y) \coloneqq (\neg x \text{ adj } y) \land (c(x) \neq c(y)) \land (\neg x \text{ copy } y)$

For fixed $\phi(x, y)$, the resulting **transduction** of C is the class of all induced subgraphs of graphs which can be obtained this way.

$$\phi(x,y) \coloneqq (\neg x \text{ adj } y) \land (c(x) \neq c(y)) \land (\neg x \text{ copy } y)$$

forbidden minor

forbidden minor

l∩ bounded expansion

(shallow minors have bounded average degree)

forbidden minor

l∩ bounded expansion

(shallow minors have bounded average degree) ∩ nowhere dense

(have forbidden shallow minors)

In monadically stable (exclude half-graph using first-order logic) In monadically dependent (exclude *anything* using first-order logic)

forbidden minor $|\cap$ bounded expansion (shallow minors have bounded average degree) $|\cap$ nowhere dense (have forbidden shallow minors) $|\cap$ monadically stable (exclude half-graph using first-order logic)

forbidden minor $|\cap$ bounded expansion (shallow minors have bounded average degree) $|\cap$ nowhere dense (have forbidden shallow minors) $|\cap$ monadically stable (exclude half-graph using first-order logic) $|\cap$ monadically dependent (exclude *anything* using first-order logic)

Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk)

A class C which is closed under vertex-deletion is **monadically dependent** if and only if FO model-checking is FPT on C.

Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk) A class C which is closed under vertex-deletion is **monadically dependent** if and only if FO model-checking is FPT on C.

Conjecture (Gajarský, Pilipczuk, Toruńczyk)

A class has unbounded clique-width if and only if it has an FO-transduction which contains a subdivision of each wall.

Conjecture (folklore; see Gajarský, Pilipczuk, Toruńczyk) A class C which is closed under vertex-deletion is **monadically dependent** if and only if FO model-checking is FPT on C.

Conjecture (Gajarský, Pilipczuk, Toruńczyk)

A class has unbounded clique-width if and only if it has an FO-transduction which contains a subdivision of each wall.

Thank you!