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player game: Flipper and Connector. In each round:

1) If |V (G )| = 1 then Flipper wins in that round.

2) Else, Connector picks a vertex v and we restrict to Br (v).

3) Then Flipper performs a flip.

Example with r = 2:



Theorem

A class of graphs is monadically stable if and only if Flipper
wins the radius-r flipper game for each r ∈ N.
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Theorem

A class of graphs is monadically stable if and only if Flipper
wins the radius-r flipper game for each r ∈ N.

Related to Dreier, Mählmann, Siebertz, and Toruńczyk. Two
player game: Flipper and Connector. In each round:

1) If |V (G )| = 1 then Flipper wins in that round.

2) Else, Connector picks a vertex v and we restrict to Br (v).

3) Then Flipper performs a flip.

Flipper wins the game on a class C if there exists t ∈ N so
that Flipper wins in ≤ t rounds on each G ∈ C.
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First-order model-checking is fixed-parameter tractable on any
class which is monadically stable.

Recall that we use first-order logic to “exclude”:

half-graph



Theorem (Comes from Dvǒrák 2018)
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Theorem (Comes from Dvǒrák 2018)

A class is nowhere dense if and only if it is monadically stable
and forbids a Kt,t-subgraph for some t ∈ N.

So our main theorem

Theorem

A class of graphs is monadically stable if and only if Flipper
wins the radius-r flipper game for each r ∈ N.

is like

Theorem (Grohe, Kreutzer, Siebertz)

A class of graphs is nowhere dense if and only if Splitter
wins the radius-r splitter game for each r ∈ N.

but for classes that are allowed to be “dense”.
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Formulas in first-order logic are obtained as follows.

1) x adj y and x = y are formulas.

2) If ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ, . . ..
3) If ϕ is a formula, then so is ∃xϕ and ∀xϕ.
A sentence is a formula ϕ with no free variables. If ϕ is true
for G , we say G models ϕ or write G |= ϕ.

Naive algorithm for k-vertex-dominating set: O(nk).

Naive algorithm for determining if G |= ϕ: O(n|ϕ|).

FO model-checking is FPT on C if there exists f : N → N
and c ∈ R so that the problem can be solved in time f (|ϕ|)nc .
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Recall that a class is monadically stable if half-graphs are
“excluded via” first-order logic. To exclude something from C:

For fixed ϕ(x , y), the resulting transduction of C is the class of
all induced subgraphs of graphs which can be obtained this way.

ϕ(x , y) := (¬x adj y) ∧ (c(x) ̸= c(y)) ∧ (¬x copy y)
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A class C which is closed under vertex-deletion is monadically
dependent if and only if FO model-checking is FPT on C.

Conjecture (Gajarský, Pilipczuk, Toruńczyk)

A class has unbounded clique-width if and only if it has an
FO-transduction which contains a subdivision of each wall.

Thank you!


