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Graph Minor Theorem (Robertson & Seymour 2004)

Every infinite set of graphs contains one that is isomorphic to
a minor of another.

Kuratowski’s Theorem

planar graphs forbidden minors



Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to
a vertex-minor of another.

Bouchet’s Theorem

circle graphs forbidden vertex-minors



Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to
a pivot-minor of another.

Geelen and Oum’s Theorem

circle graphs forbidden pivot-minors

Common generalization! (Bouchet 1988; de Fraysseix 1981)



Structure Theorem (Robertson & Seymour 2003)

For any proper minor-closed class F , each G ∈ F “decomposes”
into parts that “almost embed” in a surface of bounded genus.
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Structure Theorem (Robertson & Seymour 2003)

For any proper minor-closed class F , each G ∈ F “decomposes”
into parts that “almost embed” in a surface of bounded genus.

Used to prove:

Well-Quasi-Ordering (Robertson & Seymour 2004)

Can determine if G ∈ F in polynomial time.
(Robertson & Seymour 1995)

Can 2-approximate the chromatic number of G ∈ F .
(Demaine, Hajiaghayi, & Kawarabayashi 2005)

First-order model-checking is FPT on G ∈ F .
(Flum & Grohe 2007)



Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F , each G ∈ F
“decomposes” into parts that are “almost” circle graphs.

The thesis is part of an ongoing project with
Jim Geelen & Paul Wollan to prove the conjecture.
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Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F , each G ∈ F
“decomposes” into parts that are “almost” circle graphs.

Conjectures:

Well-quasi-ordering (Oum)

Can determine if G ∈ F in polynomial time. (Oum)

Can determine the clique number ω of G ∈ F in polynomial
time (Geelen), and the chromatic number of G is ≤ poly(ω).
(Davies; Esperet; Kim, Kwon, Oum, & Sivaraman)

Can n1−ε-approximate the chromatic number of G ∈ F .

For any ω, first-order model-checking is FPT on G ∈ F with
clique number ≤ ω.

MBQCF can be efficiently simulated classically. (Geelen)



Grid Theorem (Robertson & Seymour 1986)

For any planar graph H, every graph with tree-width ≥ f (H) has
a minor isomorphic to H.

If you cannot “decompose away the whole graph”, then

there is a big grid as a minor.



Theorem (Geelen, Kwon, McCarty, & Wollan 2020)

For any circle graph H, every graph with rank-width ≥ f (H) has
a vertex-minor isomorphic to H.

If you cannot “rank-decompose away the whole graph”, then

there is a big comparability grid as a vertex-minor.



Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class F and any G ∈ F with a large
grid minor, there is a planar subgraph containing a lot of the grid
so that the rest of G “almost attaches” onto just the outer face.
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Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement. This yields an
equivalence relation called local equivalence.

G ∗ v − v

The vertex-minors of G are the induced subgraphs of graphs
in its local equivalence class.
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this defines complete immersion minors.
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View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation, and vertex-deletion works nicely.

−→

Something similar holds with signatures when we only allow
local complementations at vertices in the circle graph.
(Primeness just makes the tour graph unique.)
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Local Structure Theorem (Geelen, McCarty, & Wollan)

For any proper vertex-minor-closed class F and any G ∈ F with a
prime circle graph containing a comparability grid, the rest of G
“almost attaches” in a way that is “mostly compatable”.

After a small perturbation, each signature of the tour graph is on
the “wrong side” of a small cut wrt the comparability grid.
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G

−→

G ∗ u ∗ v ∗ u
=

G ∗ v ∗ u ∗ v


