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Graph Minor Theorem (Robertson & Seymour 2004)

Every infinite set of graphs contains one that is isomorphic to
a minor of another.

Kuratowski's Theorem

planar graphs forbidden minors



Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to
a vertex-minor of another.

Bouchet's Theorem

circle graphs forbidden vertex-minors




Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to
a pivot-minor of another.

Geelen and Oum's Theorem
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circle graphs forbidden pivot-minors

Common generalization! (Bouchet 1988; de Fraysseix 1981)



Structure Theorem (Robertson & Seymour 2003)

For any proper minor-closed class F, each G € F “decomposes”
into parts that “almost embed” in a surface of bounded genus.
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Structure Theorem (Robertson & Seymour 2003)

For any proper minor-closed class F, each G € F “decomposes”
into parts that “almost embed” in a surface of bounded genus.

Used to prove:

o Well-Quasi-Ordering (Robertson & Seymour 2004)

o Can determine if G € F in polynomial time.
(Robertson & Seymour 1995)

o Can 2-approximate the chromatic number of G € F.
(Demaine, Hajiaghayi, & Kawarabayashi 2005)

o First-order model-checking is FPT on G € F.
(Flum & Grohe 2007)



Structural Conjecture (Geelen)

For any proper vertex-minor-closed class F, each G € F
“decomposes” into parts that are “almost” circle graphs.

The thesis is part of an ongoing project with
Jim Geelen & Paul Wollan to prove the conjecture.
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o Well-quasi-ordering (Oum)
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@ Can determine the clique number w of G € F in polynomial
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@ Can n ~“-approximate the chromatic number of G € F.

o For any w, first-order model-checking is FPT on G € F with
clique number < w.

o MBQC £ can be efficiently simulated classically. (Geelen)



Grid Theorem (Robertson & Seymour 1986)

For any planar graph H, every graph with tree-width > f(H) has
a minor isomorphic to H.

If you cannot “decompose away the whole graph”, then
there is a big grid as a minor.



Theorem (Geelen, Kwon, McCarty, & Wollan 2020)

For any circle graph H, every graph with rank-width > f(H) has
a vertex-minor isomorphic to H.

If you cannot “rank-decompose away the whole graph”, then
there is a big comparability grid as a vertex-minor.




Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class F and any G € F with a large
grid minor,



Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class F and any G € F with a large
grid minor, there is a planar subgraph containing a lot of the grid
so that the rest of G “almost attaches” onto just the outer face.



Local Structure Theorem (Geelen, McCarty, & Wollan)

For any proper vertex-minor-closed class F and any G € F with a
prime circle graph containing a comparability grid,




Local Structure Theorem (Geelen, McCarty, & Wollan)

For any proper vertex-minor-closed class F and any G € F with a
prime circle graph containing a comparability grid, the rest of G
“almost attaches” in a way that is “mostly compatable”.
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A circle graph is the intersection graph of chords on a circle.
They are closed under local complementation. Every circle
graph is a vertex-minor of a comparability grid.
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A circle graph is the intersection graph of chords on a circle.
They are closed under local complementation. Every circle
graph is a vertex-minor of a comparability grid.

chord diagram comparability grid



To prove the structural conjecture...

o WMA a big comparability grid is a vertex-minor.
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To prove the structural conjecture...
o WMA a big comparability grid is an induced subgraph.
o Find a prime circle graph containing the comparability grid.
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View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation, and vertex-deletion works nicely.
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There are 3 ways to pair the incident edges;
this defines complete immersion minors.
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complementation, and vertex-deletion works nicely.

Theorem (Kotzig 1968; Bouchet 1987)

If H and G are prime circle graphs, then their tour graphs are
unique, and H is a vertex-minor of G iff its tour graph is a
complete immersion minor of the tour graph of G.
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View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation, and vertex-deletion works nicely.

Something similar holds with signatures when we only allow
local complementations at vertices in the circle graph.
(Primeness just makes the tour graph unique.)
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Local Structure Theorem (Geelen, McCarty, & Wollan)

For any proper vertex-minor-closed class F and any G € F with a
prime circle graph containing a comparability grid, the rest of G
“almost attaches” in a way that is ‘mostly compatable”.

After a small perturbation, each signature of the tour graph is on
the “wrong side” of a small cut wrt the comparability grid.
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