Local structure for vertex-minors

Rose McCarty
Department of Combinatorics and Optimization
university of
WATERLOO

September 9th, 2021

Graph Minor Theorem (Robertson \& Seymour 2004)
Every infinite set of graphs contains one that is isomorphic to a minor of another.

Kuratowski's Theorem

planar graphs

forbidden minors

Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to a vertex-minor of another.

Bouchet's Theorem

circle graphs

forbidden vertex-minors

Well-Quasi-Ordering Conjecture (Oum 2017)

Every infinite set of graphs contains one that is isomorphic to a pivot-minor of another.

Geelen and Oum's Theorem

circle graphs

forbidden pivot-minors

Common generalization! (Bouchet 1988; de Fraysseix 1981)

Structure Theorem (Robertson \& Seymour 2003)

For any proper minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that "almost embed" in a surface of bounded genus.

figure by Felix Reidl

Structure Theorem (Robertson \& Seymour 2003)

For any proper minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that "almost embed" in a surface of bounded genus.

Used to prove:

- Well-Quasi-Ordering (Robertson \& Seymour 2004)

Structure Theorem (Robertson \& Seymour 2003)

For any proper minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that "almost embed" in a surface of bounded genus.

Used to prove:

- Well-Quasi-Ordering (Robertson \& Seymour 2004)
- Can determine if $G \in \mathcal{F}$ in polynomial time.
(Robertson \& Seymour 1995)

Structure Theorem (Robertson \& Seymour 2003)

For any proper minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that "almost embed" in a surface of bounded genus.

Used to prove:

- Well-Quasi-Ordering (Robertson \& Seymour 2004)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Robertson \& Seymour 1995)
- Can 2-approximate the chromatic number of $G \in \mathcal{F}$. (Demaine, Hajiaghayi, \& Kawarabayashi 2005)

Structure Theorem (Robertson \& Seymour 2003)

For any proper minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that "almost embed" in a surface of bounded genus.

Used to prove:

- Well-Quasi-Ordering (Robertson \& Seymour 2004)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Robertson \& Seymour 1995)
- Can 2-approximate the chromatic number of $G \in \mathcal{F}$.
(Demaine, Hajiaghayi, \& Kawarabayashi 2005)
- First-order model-checking is FPT on $G \in \mathcal{F}$.
(Flum \& Grohe 2007)

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

The thesis is part of an ongoing project with Jim Geelen \& Paul Wollan to prove the conjecture.

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω of $G \in \mathcal{F}$ in polynomial time (Geelen),

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω of $G \in \mathcal{F}$ in polynomial time (Geelen), and the chromatic number of G is $\leq \operatorname{poly}(\omega)$. (Davies; Esperet; Kim, Kwon, Oum, \& Sivaraman)

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω of $G \in \mathcal{F}$ in polynomial time (Geelen), and the chromatic number of G is $\leq \operatorname{poly}(\omega)$. (Davies; Esperet; Kim, Kwon, Oum, \& Sivaraman)
- Can $n^{1-\epsilon}$-approximate the chromatic number of $G \in \mathcal{F}$.

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω of $G \in \mathcal{F}$ in polynomial time (Geelen), and the chromatic number of G is $\leq \operatorname{poly}(\omega)$. (Davies; Esperet; Kim, Kwon, Oum, \& Sivaraman)
- Can $n^{1-\epsilon}$-approximate the chromatic number of $G \in \mathcal{F}$.
- For any ω, first-order model-checking is FPT on $G \in \mathcal{F}$ with clique number $\leq \omega$.

Structural Conjecture (Geelen)

For any proper vertex-minor-closed class \mathcal{F}, each $G \in \mathcal{F}$ "decomposes" into parts that are "almost" circle graphs.

Conjectures:

- Well-quasi-ordering (Oum)
- Can determine if $G \in \mathcal{F}$ in polynomial time. (Oum)
- Can determine the clique number ω of $G \in \mathcal{F}$ in polynomial time (Geelen), and the chromatic number of G is $\leq \operatorname{poly}(\omega)$. (Davies; Esperet; Kim, Kwon, Oum, \& Sivaraman)
- Can $n^{1-\epsilon}$-approximate the chromatic number of $G \in \mathcal{F}$.
- For any ω, first-order model-checking is FPT on $G \in \mathcal{F}$ with clique number $\leq \omega$.
- $\mathrm{MBQC}_{\mathcal{F}}$ can be efficiently simulated classically. (Geelen)

Grid Theorem (Robertson \& Seymour 1986)

For any planar graph H, every graph with tree-width $\geq f(H)$ has a minor isomorphic to H.

If you cannot "decompose away the whole graph", then there is a big grid as a minor.

Theorem (Geelen, Kwon, McCarty, \& Wollan 2020)
For any circle graph H, every graph with rank-width $\geq f(H)$ has a vertex-minor isomorphic to H.

If you cannot "rank-decompose away the whole graph", then there is a big comparability grid as a vertex-minor.

Flat Wall Theorem (Robertson \& Seymour 1995)
For any proper minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a large grid minor, there is a planar subgraph containing a lot of the grid so that the rest of G "almost attaches" onto just the outer face.

Flat Wall Theorem (Robertson \& Seymour 1995)

For any proper minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a large grid minor, there is a planar subgraph containing a lot of the grid so that the rest of G "almost attaches" onto just the outer face.

Local Structure Theorem (Geelen, McCarty, \& Wollan)
For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid,

Local Structure Theorem (Geelen, McCarty, \& Wollan)

For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

$G * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields an equivalence relation called local equivalence.

$G * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields an equivalence relation called local equivalence.

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields an equivalence relation called local equivalence.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields an equivalence relation called local equivalence.

The vertex-minors of G are the induced subgraphs of graphs in its local equivalence class.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields an equivalence relation called local equivalence.

The vertex-minors of G are the induced subgraphs of graphs in its local equivalence class.

$$
G * v
$$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields an equivalence relation called local equivalence.

The vertex-minors of G are the induced subgraphs of graphs in its local equivalence class.

$$
G * v-v
$$

A circle graph is the intersection graph of chords on a circle.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

chord diagram

circle graph $G * v$

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

chord diagram

circle graph $G * v * u$

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

chord diagram

circle graph $G * v * u-v$

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

chord diagram

comparability grid

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

chord diagram

comparability grid

To prove the structural conjecture...

- WMA a big comparability grid is a vertex-minor.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if x can be added to the circle graph?

If x can be added as a chord,

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

If \times can be added as a chord, then its neighbourhood can be encoded by two arcs.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

If \times can be added as a chord, then its neighbourhood can be encoded by two arcs.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

To prove the structural conjecture...

- WMA a big comparability grid is an induced subgraph.
- Find a prime circle graph containing the comparability grid.
- How can we tell if \times can be added to the circle graph?

Any neighbourhood can be encoded by an even number of arcs.
These arc-sets are called signatures and are equiv up to shifting.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

There are 3 ways to pair the incident edges; this defines complete immersion minors.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

Theorem (Kotzig 1968; Bouchet 1987)
If H and G are prime circle graphs, then their tour graphs are unique,

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

Theorem (Kotzig 1968; Bouchet 1987)
If H and G are prime circle graphs, then their tour graphs are unique, and H is a vertex-minor of G iff its tour graph is a complete immersion minor of the tour graph of G.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

Something similar holds with signatures when we only allow local complementations at vertices in the circle graph.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

Something similar holds with signatures when we only allow local complementations at vertices in the circle graph.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

Something similar holds with signatures when we only allow local complementations at vertices in the circle graph. (Primeness just makes the tour graph unique.)

Local Structure Theorem (Geelen, McCarty, \& Wollan)

For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

Local Structure Theorem (Geelen, McCarty, \& Wollan)
For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

After a small perturbation,

Local Structure Theorem (Geelen, McCarty, \& Wollan)
For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

After a small perturbation,

Local Structure Theorem (Geelen, McCarty, \& Wollan)
For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

After a small perturbation,

Local Structure Theorem (Geelen, McCarty, \& Wollan)
For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

After a small perturbation,

Local Structure Theorem (Geelen, McCarty, \& Wollan)

For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G "almost attaches" in a way that is "mostly compatable".

After a small perturbation, each signature of the tour graph is on the "wrong side" of a small cut wrt the comparability grid.

Future work:

- Structure
- Well-quasi-ordering, membership testing, colouring, ...
- Pivot-minors?

Future work:

- Structure
- Well-quasi-ordering, membership testing, colouring, . . .
- Pivot-minors?

