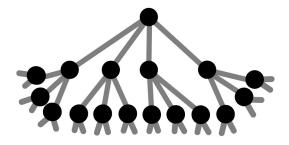
Average degree and girth

Rose McCarty

Department of Mathematics

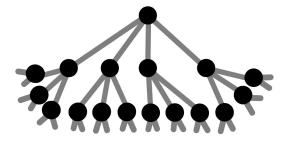
October 25th, 2022 Oxford Discrete Maths and Probability Seminar

For any $d, k \in \mathbb{N}$, there exists a graph with avgdeg $\geq d$ and girth $\geq k$.



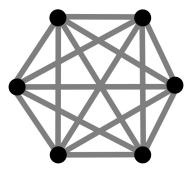
Locally such a graph is a tree.

There exists a graph with avgdeg $\geq d$ and girth $\geq k$.

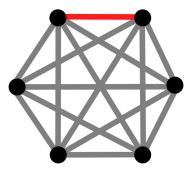


Locally such a graph is a tree.

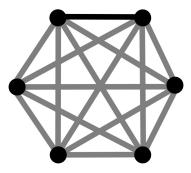
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



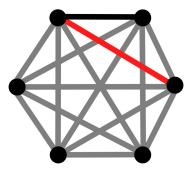
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



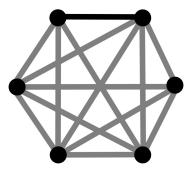
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



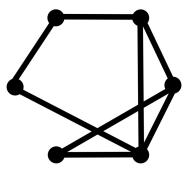
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



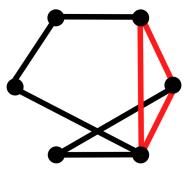
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



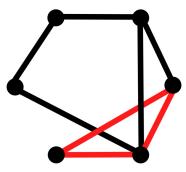
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



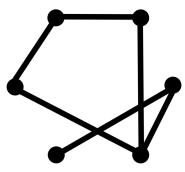
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



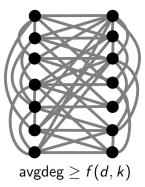
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



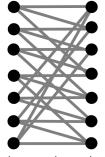
There exists a graph with avgdeg $\geq d$ and girth $\geq k$.



There exists a function f so that **every** graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.



There exists a function f so that **every** graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.



avgdeg $\geq d$, girth $\geq k$

Every graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.



avgdeg $\geq d$, girth $\geq k$

Every graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.

• It is true for regular graphs,

Every graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.

- It is true for regular graphs,
- but there are graphs with avgdeg ≥ D and no d-regular subgraph for any d ≥ 3. (Pyber-Rödl-Szemerédi 1995).

Every graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.

- It is true for regular graphs,
- but there are graphs with avgdeg ≥ D and no d-regular subgraph for any d ≥ 3. (Pyber-Rödl-Szemerédi 1995).
- We can reduce to the case of bipartite graphs.

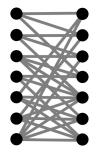
Every graph of avgdeg $\geq f(d, k)$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.

- It is true for regular graphs,
- but there are graphs with avgdeg ≥ D and no d-regular subgraph for any d ≥ 3. (Pyber-Rödl-Szemerédi 1995).
- We can reduce to the case of bipartite graphs.

Theorem (Kühn-Osthus 2004)

Every **bipartite** graph of avgdeg $\geq f(d)$ has a subgraph with avgdeg $\geq d$ and **no** 4-cycles.

Every graph of avgdeg $\geq f(t, d, k)$ has either a $K_{t,t}$ -subgraph or an induced subgraph of avgdeg $\geq d$ and girth $\geq k$.

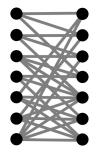


 $avgdeg \geq f(t, d, k)$

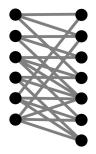
Every graph of avgdeg $\geq f(t, d, k)$ has either a $K_{t,t}$ -subgraph or an induced subgraph of avgdeg $\geq d$ and girth $\geq k$.

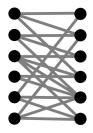
 $K_{t,t}$ -subgraph

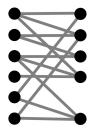
Every graph of avgdeg $\geq f(t, d, k)$ has either a $K_{t,t}$ -subgraph or an induced subgraph of avgdeg $\geq d$ and girth $\geq k$.

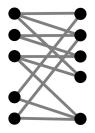


 $avgdeg \geq f(t, d, k)$









avgdeg
$$\geq d$$
, girth $\geq k$

Every graph of avgdeg $\geq f(t, d, k)$ has either a $K_{t,t}$ -subgraph or an induced subgraph of avgdeg $\geq d$ and girth $\geq k$.

• It is true for regular graphs; include **vertices** iid and apply Kövári–Sós–Turán to bound the number of short cycles.

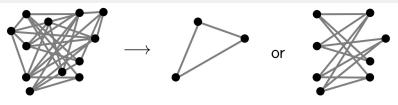
- It is true for regular graphs; include **vertices** iid and apply Kövári–Sós–Turán to bound the number of short cycles.
- It is possible to reduce to the case of bipartite graphs...

Every graph of avgdeg $\geq f(t, d, k)$ has either a $K_{t,t}$ -subgraph or an induced subgraph of avgdeg $\geq d$ and girth $\geq k$.

- It is true for regular graphs; include **vertices** iid and apply Kövári–Sós–Turán to bound the number of short cycles.
- It is possible to reduce to the case of bipartite graphs...

Theorem (Kwan-Letzter-Sudakov-Tran 2020)

Every graph of avgdeg $\geq f(t, d)$ has either K_t or an induced **bipartite** subgraph with avgdeg $\geq d$.



Every graph of avgdeg $\geq f(t, d, k)$ has either a $K_{t,t}$ -subgraph or an induced subgraph of avgdeg $\geq d$ and girth $\geq k$.

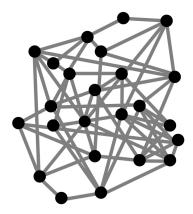
- It is true for regular graphs; include **vertices** iid and apply Kövári–Sós–Turán to bound the number of short cycles.
- It is possible to reduce to the case of bipartite graphs...

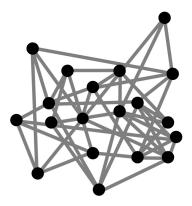
Theorem (Kwan-Letzter-Sudakov-Tran 2020)

Every graph of avgdeg $\geq f(t, d)$ has either K_t or an induced **bipartite** subgraph with avgdeg $\geq d$.

Theorem (2021)

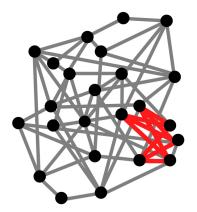
Every **bipartite** graph of avgdeg $\geq f(t, d)$ has either $K_{t,t}$ or an induced subgraph with avgdeg $\geq d$ and **no** 4-cycles.





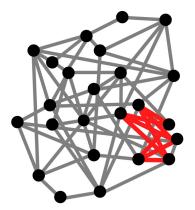
 $mad(G) \coloneqq max_{H \leq G} avgdeg(H)$

$$mad(G) := max_{H \leq G} avgdeg(H)$$



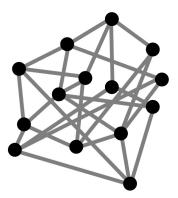
biclique number $\tau(G) :=$ maximum *t* so that *G* has $K_{t,t}$ -subgraph

For which classes of graphs does there exist a function f so that $mad(G) \le f(\tau(G))$?

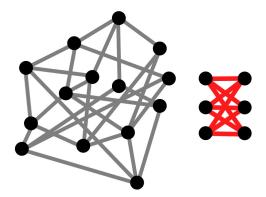


biclique number $\tau(G) :=$ maximum *t* so that *G* has $K_{t,t}$ -subgraph

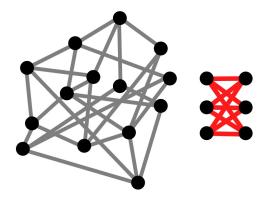
For which classes of graphs does there exist a function f so that $mad(G) \le f(\tau(G))$?

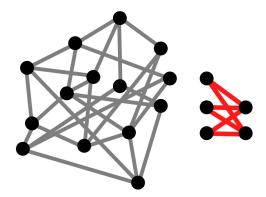


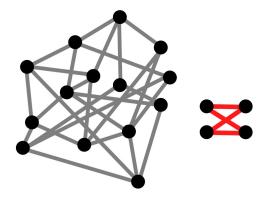
There exist graphs of arbitrarily large average degree and girth (Erdös).

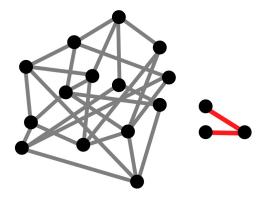


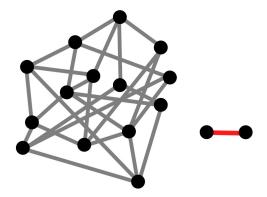
There exist graphs of arbitrarily large average degree and girth (Erdös).

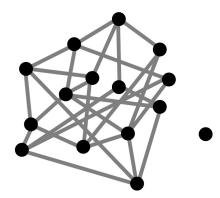


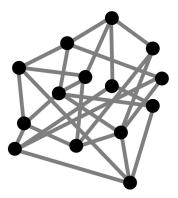


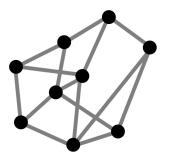






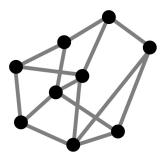






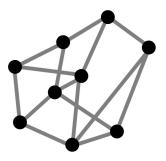


Call such a class **degree-bounded** and *f* a **bounding function**.

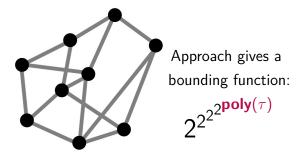


Conjecture

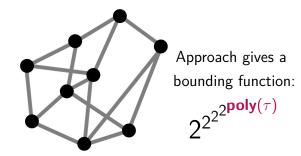
A class is **degree-bounded** \Leftrightarrow it does not contain graphs of arbitrarily large average degree and girth.



Theorem (Uses the theorem of Kwan, Letzter, Sudakov, Tran) A class is **degree-bounded** \Leftrightarrow there exists $c \in \mathbb{N}$ such that every bipartite, 4-cycle-free graph in the class has avgdeg $\leq c$.

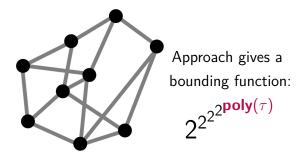


Theorem (Uses the theorem of Kwan, Letzter, Sudakov, Tran) A class is **degree-bounded** \Leftrightarrow there exists $c \in \mathbb{N}$ such that every bipartite, 4-cycle-free graph in the class has avgdeg $\leq c$.

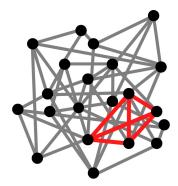


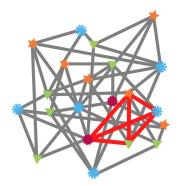
Question

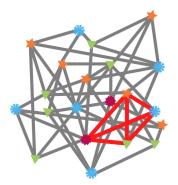
Does every degree-bounded class have a bounding function that is a **polynomial**?



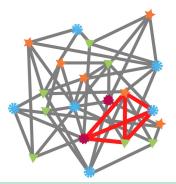
Analogous to problems on chromatic number.





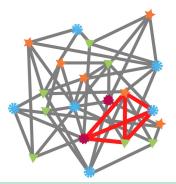


Call such a class χ -bounded and f a χ -bounding function.



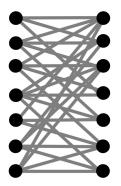
Theorem (Carbonero-Hompe-Moore-Spirkl 2022)

There exist graphs with arbitrarily large chromatic number but no triangle-free induced subgraph of chromatic number $\geq k$.

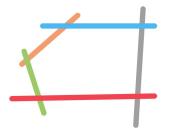


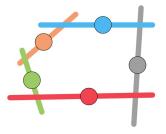
Theorem (Briański-Davies-Walczak 2022)

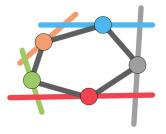
There is a χ -bounded class that has no polynomial χ -bounding function.



Not every χ -**bounded** class is **degree-bounded**.







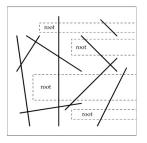


Fig. 1. Segments, probes and roots.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

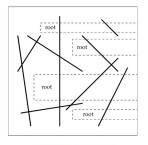
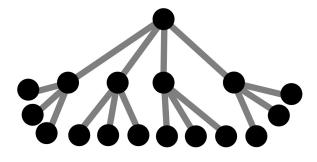
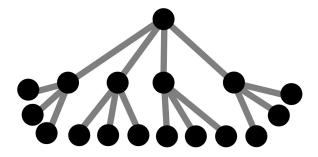


Fig. 1. Segments, probes and roots.

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

All of their induced subgraphs with girth ≥ 5 have bounded average degree (Fox-Pach 2008).





It is not known if these classes are χ -**bounded**; this is the Gyárfás–Sumner Conjecture.

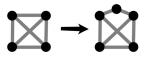
Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)



Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

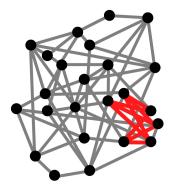
$$\boxtimes \to \boxtimes \to \boxtimes$$

Theorem (Bonamy-Bousquet-Pilipczuk-Rzążewski-Thomassé-Walczak) For any integer ℓ , the class of graphs with no induced cycle of length $\geq \ell$ has avgdeg $\leq \operatorname{poly}(\tau)$.

Theorem (Kühn & Osthus)

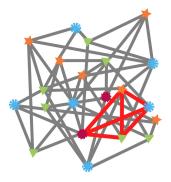
$$\boxtimes \to \boxtimes \to \boxtimes \to \boxtimes$$

degree-bounded:



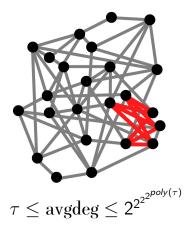
 $\tau \leq \operatorname{avgdeg} \leq f(\tau)$

χ -bounded:

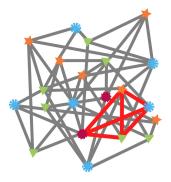


 $\omega \leq \chi \leq f(\omega)$

degree-bounded:

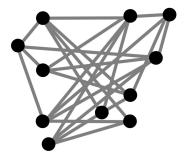


χ -bounded:

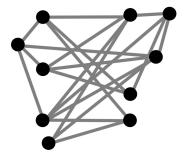


 $\omega \leq \chi \leq f(\omega)$

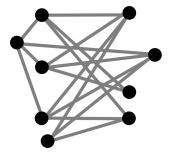
Theorem (Kwan-Letzter-Sudakov-Tran 2020)



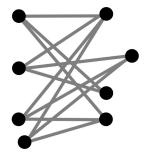
Theorem (Kwan-Letzter-Sudakov-Tran 2020)



Theorem (Kwan-Letzter-Sudakov-Tran 2020)

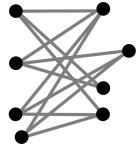


Theorem (Kwan-Letzter-Sudakov-Tran 2020)



Theorem (Kwan-Letzter-Sudakov-Tran 2020)

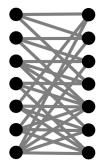
Every graph of avgdeg $\geq 2^{d^2 2^{\text{poly}(t)}}$ has either K_t or an induced bipartite subgraph with avgdeg $\geq d$.



The function must be exponential in d.

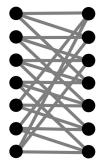
Theorem (Kühn & Osthus, 04)

Every bipartite graph of avgdeg $\geq 2^{2^{poly(d)}}$ has a subgraph with avgdeg $\geq d$ and no 4-cycles.



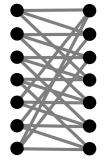
Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)

Every bipartite graph of avgdeg $\geq 2^{\text{poly}(d)}$ has a subgraph with avgdeg $\geq d$ and no 4-cycles.



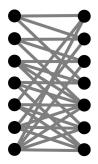
Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)

Every bipartite graph of avgdeg $\geq 2^{\text{poly}(d)}$ has a subgraph with avgdeg $\geq d$ and no 4-cycles.



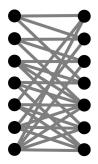
Showed a lower bound of $d^{3-o(1)}$.

Theorem

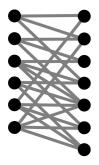


Theorem

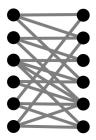
Theorem



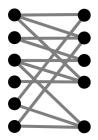
Theorem



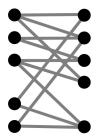
Theorem



Theorem

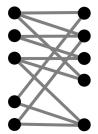


Theorem



Theorem

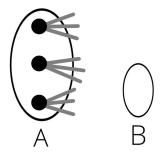
Every bipartite graph of avgdeg $\geq 2^{2^{2^{poly(t)f(d)}}}$ has either $K_{t,t}$ or an **induced subgraph** with avgdeg $\geq d$ and no 4-cycles.



Based on a proof of Dellamonica, Koubek, Martin, & Rödl, 11.

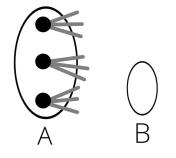
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



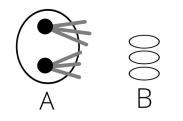
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



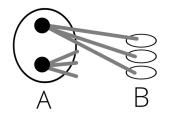
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



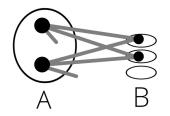
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



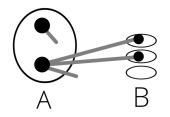
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



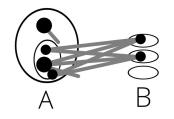
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



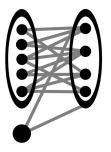
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



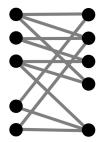
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



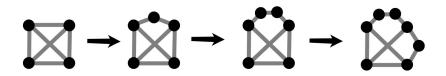
Lemma

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an **induced** (r, λ) -subgraph.



Question

Does every degree-bounded class have a bounding function that is a **polynomial**?



Thank you!