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Theorem (Kühn-Osthus 2004)
Every bipartite graph of avgdeg ≥ f (d) has a subgraph with
avgdeg ≥ d and no 4-cycles.
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Theorem (Kwan-Letzter-Sudakov-Tran 2020)
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bipartite subgraph with avgdeg ≥ d.

Theorem (2021)
Every bipartite graph of avgdeg ≥ f (t, d) has either Kt,t or
an induced subgraph with avgdeg ≥ d and no 4-cycles.
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A class is degree-bounded ⇔ it does not contain graphs of
arbitrarily large average degree and girth.
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Question
Does every degree-bounded class have a bounding function
that is a polynomial?
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Analogous to problems on chromatic number.
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For which classes of graphs does there exist a
function f so that χ(G) ≤ f (ω(G))?

Theorem (Carbonero-Hompe-Moore-Spirkl 2022)
There exist graphs with arbitrarily large chromatic number but
no triangle-free induced subgraph of chromatic number ≥ k.



For which classes of graphs does there exist a
function f so that χ(G) ≤ f (ω(G))?

Theorem (Briański-Davies-Walczak 2022)
There is a χ-bounded class that has no polynomial χ-bounding
function.
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For which classes of graphs does there exist a
function f so that χ(G) ≤ f (ω(G))?

Pawlik, Kozik, Krawczyk
Lasoń, Micek, Trotter,
& Walczak showed that
they are not χ-bounded.

All of their induced subgraphs with girth ≥ 5
have bounded average degree (Fox-Pach 2008).
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It is not known if these classes are χ-bounded;
this is the Gyárfás–Sumner Conjecture.
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Theorem (Kwan-Letzter-Sudakov-Tran 2020)

Every graph of avgdeg ≥ 2d22poly(t) has either Kt or an induced
bipartite subgraph with avgdeg ≥ d.

The function must be exponential in d .
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Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)
Every bipartite graph of avgdeg ≥ 2poly(d) has a subgraph with
avgdeg ≥ d and no 4-cycles.

Showed a lower bound of d3−o(1).
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Theorem

Every bipartite graph of avgdeg ≥ 222poly(t)f (d)
has either Kt,t or

an induced subgraph with avgdeg ≥ d and no 4-cycles.

Based on a proof of Dellamonica, Koubek, Martin, & Rödl, 11.
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Question
Does every degree-bounded class have a bounding function
that is a polynomial?



Thank you!


