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Theorem (Erdés 1959)

For any d, k € N, there exists a graph with avgdeg > d and
girth > k.

Locally such a graph is a tree.
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Conjecture (Thomassen 1983)

There exists a function f so that every graph of avgdeg >
f(d, k) has a subgraph with avgdeg > d and girth > k.
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avgdeg > d and girth > k.

o It is true for regular graphs,

o but there are graphs with avgdeg > D and no d-regular
subgraph for any d > 3. (Pyber-RédI-Szemerédi 1995).
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Theorem (Kiithn-Osthus 2004)

Every bipartite graph of avgdeg > f(d) has a subgraph with
avgdeg > d and no 4-cycles.
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Conjecture
Every graph of avgdeg > f(t, d, k) has either a K .-subgraph
or an induced subgraph of avgdeg > d and girth > k.
o It is true for regular graphs; include vertices iid and apply
Kovari-Sos—Turan to bound the number of short cycles.
o It is possible to reduce to the case of bipartite graphs...

Theorem (Kwan-Letzter-Sudakov-Tran 2020)

Every graph of avgdeg > f(t,d) has either K; or an induced
bipartite subgraph with avgdeg > d.

Theorem (2021)

Every bipartite graph of avgdeg > f(t,d) has either K. or
an induced subgraph with avgdeg > d and no 4-cycles.



When is the maximum average degree of a graph
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For which classes of graphs does there exist a
function f so that mad(G) < f(7(G))?
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Conjecture

A class is degree-bounded & it does not contain graphs of
arbitrarily large average degree and girth.
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Question

Does every degree-bounded class have a bounding function
that is a polynomial?
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Analogous to problems on chromatic number.
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Call such a class y-bounded
and f a y-bounding function.



For which classes of graphs does there exist a
function f so that x(G) < f(w(G))?

Theorem (Carbonero-Hompe-Moore-Spirkl 2022)

There exist graphs with arbitrarily large chromatic number but
no triangle-free induced subgraph of chromatic number > k.



For which classes of graphs does there exist a
function f so that x(G) < f(w(G))?

Theorem (Brianski-Davies-Walczak 2022)

There is a x-bounded class that has no polynomial x-bounding
function.
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For which classes of graphs does there exist a
function f so that x(G) < f(w(G))?

Pawlik, Kozik, Krawczyk
Lason, Micek, Trotter,

& Walczak showed that
they are not y-bounded.

All of their induced subgraphs with girth > 5
have bounded average degree (Fox-Pach 2008).
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For any forest F, the class of graphs with no induced F has
avgdeg < poly(7).

It is not known if these classes are y-bounded;
this is the Gyarfas—Sumner Conjecture.
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degree-bounded: x-bounded:

7 < avgdeg < f(7)



degree-bounded: x-bounded:
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7 < avgdeg < 22
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Theorem (Kwan-Letzter-Sudakov-Tran 2020)

Every graph of avgdeg > 292" has either K, or an induced

bipartite subgraph with avgdeg > d.

The function must be exponential in d.
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Obtaining/improving the bound avgdeg < 2%

Theorem (Montgomery, Pokrovskiy, & Sudakov, 20)

Every bipartite graph of avgdeg > 2P°Y(%) has a subgraph with
avgdeg > d and no 4-cycles.

Showed a lower bound of d3—°().
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poly(T)

Obtaining/improving the bound avgdeg < 02"

Theorem

oly(t)f(d)
Every bipartite graph of avgdeg > 222" has either K or

an induced subgraph with avgdeg > d and no 4-cycles.

Based on a proof of Dellamonica, Koubek, Martin, & Rédl, 11.
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For any r, A > 1, every bipartite graph of avgdeg > f(r,\) has
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Question

Does every degree-bounded class have a bounding function
that is a polynomial?
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Thank you!



