Local structure for vertex-minors

Rose McCarty

October 19th, 2022

Joint work with Jim Geelen and Paul Wollan.

Kuratowski's Theorem

A graph is planar iff it has no K_5 or $K_{3,3}$ minor.

planar graphs

forbidden minors

Kuratowski's Theorem

A graph is planar iff it has no K_5 or $K_{3,3}$ minor.

Graph Minors Theorem (Robertson & Seymour 2004) Every minor-closed class has finitely many forbidden minors.

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

Theory of "sparsity" (Nešetřil & Ossona de Mendez)

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

What are the "dense" analogs?

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

planar graphs \longrightarrow circle graphs

Bouchet's Theorem

A graph is a **circle graph** iff it has no W_5 , \hat{W}_6 , or W_7 **vertex-minor**.

circle graphs

forbidden vertex-minors

Bouchet's Theorem

A graph is a **circle graph** iff it has no W_5 , \hat{W}_6 , or W_7 **vertex-minor**.

Every **vertex-minor**-closed class has finitely many forbidden vertex-minors.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Ongoing project with Jim Geelen & Paul Wollan aiming to prove the conjecture.

Geelen and Oum's Theorem

A graph is a circle graph iff it has no W_5, W_6, \ldots pivot-minor.

forbidden pivot-minors

Geelen and Oum's Theorem

A graph is a circle graph iff it has no W_5, W_6, \ldots pivot-minor.

circle graphs

forbidden pivot-minors

Conjecture (Oum 2017)

Every **pivot-minor**-closed class has finitely many forbidden pivot-minors.

Geelen and Oum's Theorem

A graph is a circle graph iff it has no W_5, W_6, \ldots pivot-minor.

Common generalization! (Bouchet 1988; de Fraysseix 1981)

Conjecture (Oum 2017)

Every **pivot-minor**-closed class has finitely many forbidden pivot-minors.

1) vertex deletion and

2) local complementation

G

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) local complementation

- 1) vertex deletion and
- 2) **local complementation**: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

- 1) vertex deletion and
- local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

- 1) vertex deletion and
- 2) **local complementation**: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

- 1) vertex deletion and
- local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

- 1) vertex deletion and
- local complementation: select a vertex v and replace the induced subgraph on neighborhood(v) by its complement.

• nice interpretation for graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

• nice interpretation for graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

• nice interpretation for graph states in quantum computing

FIG. 1. Quantum computation by measuring two-state parti-

(Raussendorf-Briegel, Van den Nest-Dehaene-De Moor)

Conjecture (Geelen)

If the graph states that can be prepared come from a proper vertex-minor-closed class \mathcal{F} , then $BQP_{\mathcal{F}} = BPP$.

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function

adjacency matrix

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function

The **cut-rank** of $X \subseteq V(G)$ is the rank of $\operatorname{adj}[X, \overline{X}]$ over GF_2 .

- nice interpretation for graph states in quantum computing
- locally equivalent graphs have the same cut-rank function

The **cut-rank** of $X \subseteq V(G)$ is the rank of $adj[X, \overline{X}]$ over GF_2 . It is symmetric: **cut-rank** $(X) = cut-rank(\overline{X})$.

The graphs in any proper minor-closed class "decompose" into parts that "almost embed" in a surface of bounded genus.

Figure by Felix Reidl

Conjecture (Geelen)

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Grid Theorem (Robertson & Seymour 1986)

A class of graphs has bounded tree-width if and only if it does not contain all planar graphs as minors.

excludes

grid as a minor

Theorem (Geelen, Kwon, McCarty, & Wollan 2020) A class of graphs has bounded rank-width if and only if it does not contain all circle graphs as vertex-minors.

excludes

comparability grid as a vertex-minor

Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a large grid minor, there is a planar subgraph containing a lot of the grid so that the rest of G "almost attaches" onto just the outer face.

Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a large grid minor, there is a planar subgraph containing a lot of the grid so that the rest of G "almost attaches" onto just the outer face.

Local Structure Theorem (Geelen, McCarty, & Wollan) For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G"almost attaches" in a way that is "mostly compatible".

Local Structure Theorem (Geelen, McCarty, & Wollan) For any proper vertex-minor-closed class \mathcal{F} and any $G \in \mathcal{F}$ with a prime circle graph containing a comparability grid, the rest of G"almost attaches" in a way that is "mostly compatible".

chord diagram

circle graph

tour graph

chord diagram

circle graph

tour graph

View the **chord diagram** as a 3-regular graph...

chord diagram

circle graph

tour graph

chord diagram

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit.

chord diagram

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit.

chord diagram

circle graph

tour graph

View the **chord diagram** as a 3-regular graph and contract each of the chords to get the **tour graph**. It has a specified Eulerian circuit. Consider locally complementing at v then u. To delete v, **split it off** in the **tour graph**.

In a 4-regular graph, there are 3 ways to **split off** v.

In a 4-regular graph, there are 3 ways to split off v.

Theorem (Kotzig, Bouchet)

For prime circle graphs H and G, H is a vertex-minor of G iff tour(H) can be obtained from tour(G) by splitting off vtcs.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

If x can be added as a chord,

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

If x can be added as a chord, then its neighbourhood can be encoded by two arcs.

The graphs in any proper **vertex-minor**-closed class "decompose" into parts that are "almost" **circle graphs**.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

Any neighbourhood can be encoded by even number of arcs.
The graphs in any proper vertex-minor-closed class "decompose" into parts that are "almost" circle graphs.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

Any neighbourhood can be encoded by even number of arcs.

The graphs in any proper vertex-minor-closed class "decompose" into parts that are "almost" circle graphs.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

Any neighbourhood can be encoded by even number of arcs.

The graphs in any proper vertex-minor-closed class "decompose" into parts that are "almost" circle graphs.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

Any neighbourhood can be encoded by even number of arcs.

The graphs in any proper vertex-minor-closed class "decompose" into parts that are "almost" circle graphs.

Proof approach:

WMA our favorite circle graph is an induced subgraph. Add more vertices as long as they still induce a circle graph.

Any neighbourhood can be encoded by even number of arcs. We can **locally complement** at vertices in the circle graph. **Rank-width**(G) is the minimum width of a subcubic tree T with leafs V(G).

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

width(T) = $\max_{e \in E(T)}$ cut-rank(X_e)

Conjecture (Oum 2009)

A class of graphs has bounded rank-width if and only if it does not contain all **bipartite** circle graph as **pivot-minors**.

Conjecture (Oum 2009)

A class of graphs has bounded rank-width if and only if it does not contain all **bipartite** circle graph as **pivot-minors**.

Would be a common generalization!

Thank you!