Unavoidable dense induced subgraphs

Rose McCarty

September 2020

Conjecture (Thomassen, 1983) For any d, k, every graph of avgdeg $\geq \underline{f(d, k)}$ has a subgraph with avgdeg $\geq d$ and girth $\geq k$.

This notation is user! throughout the talk to mean that "For any d,k, there exists f(d,k) such that..."

avgdeg $\geq d$, girth $\geq k$

Conjecture (Thomassen, 1983) For any d, k, every graph of $avgdeg \ge f(d, k)$ has a subgraph with $avgdeg \ge d$ and $girth \ge k$.

- The previous approach works for regular graphs,
- but there are graphs with avgdeg ≥ D and no d-regular subgraph, for any D ≥ d ≥ 3. (Pyber, Rödl, Szemerédi, 1995).

What if we want an **induced** subgraph of large average degree and girth?

biclique $K_{3,3}$

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an induced subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

- Implies Thomassen's Conjecture.
- Why should this conjecture be true?

For any d, k, every graph of avgdeg $\geq f(d, k)$ has either K_d , or $K_{d,d}$, or a graph with avgdeg $\geq d$ and girth $\geq k$ as an **induced** subgraph.

- Implies Thomassen's Conjecture.
- Why should this conjecture be true?
- What makes Thomassen's Conjecture hard?

Proposition

For any d, every graph of avgdeg $\geq 2d$ has a **bipartite** subgraph with avgdeg $\geq d$.

Proposition

For any d, every graph of avgdeg $\geq 2d$ has a **bipartite** subgraph with avgdeg $\geq d$.

Proposition

For any d, every graph of avgdeg $\geq 2d$ has a **bipartite** subgraph with avgdeg $\geq d$.

Theorem (Kühn and Osthus, 2004) For any d, every bipartite graph of $avgdeg \ge f(d)$ has a subgraph with $avgdeg \ge d$ and no 4-cycles.

Theorem (Kühn and Osthus, 2004) For any d, every bipartite graph of $avgdeg \ge f(d)$ has a subgraph with $avgdeg \ge d$ and no 4-cycles.

Theorem

Theorem

For any d, every bipartite graph of $avgdeg \ge f(d)$ has either $K_{d,d}$ or a graph with $avgdeg \ge d$ and no 4-cycles as an induced subgraph.

Based on Dellamonica, Koubek, Martin, Rödl, '11

Regular bipartite graphs

Proposition

For any d, k, and $D \ge f(d, k)$, every D-regular bipartite graph has either $K_{d,d}$ or a graph with avgdeg $\ge d$ and girth $\ge k$ as an induced subgraph.

Regular bipartite graphs

Proposition

For any d, k, and $D \ge f(d, k)$, every D-regular bipartite graph has either $K_{d,d}$ or a graph with avgdeg $\ge d$ and girth $\ge k$ as an induced subgraph.

 Include vertices iid and apply Kövári–Sós–Turán to bound the number of short cycles.

Proposition (again)

For any d, k, and $D \ge f(d, k)$, every D-regular bipartite graph has either $K_{d,d}$ or a graph with avgdeg $\ge d$ and girth $\ge k$ as an induced subgraph.

Proof. (k = 6) d, k fixed and n:=|v(G)/2

• Lemma: Graph has $\mathcal{O}(nD^{3-1/d})$ cycles of length 4, if no Kd,

Proposition (again)

For any d, k, and $D \ge f(d, k)$, every D-regular bipartite graph has either $K_{d,d}$ or a graph with avgdeg $\ge d$ and girth $\ge k$ as an induced subgraph.

Proof. (k = 6)

- Lemma: Graph has $\mathcal{O}(nD^{3-1/d})$ cycles of length 4.
- Include each vertex with probability $p = 1/D^{1-\epsilon}$ then delete one vertex from each cycle of length 4.

 $\mathbb{E}[\# \text{vertices}] \leq 2pn$ $\mathbb{E}[\# \text{edges originally}] = p^2 Dn = D^{\ell} pn$ $\mathbb{E}[\# \text{deleted edges}] \leq \mathbb{E} \left[\# (\ell, \zeta) : \sum_{n=1}^{\infty} \sigma^n \sum_{n=1}^{\infty} \right]$ $\leq p^2 n D^{n-1/d} = pn (pD)^{n-1/d} = pn D^{n-1/d}$

Theorem (again)

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an induced (r, λ) -subgraph.

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an induced (r, λ) -subgraph.

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an induced (r, λ) -subgraph.

• Apply (Füredi, 1983).

For any $r, \lambda \ge 1$, every bipartite graph of avgdeg $\ge f(r, \lambda)$ has an induced (r, λ) -subgraph.

 Apply (Füredi, 1983). Br "adjacent" to all other Bi. Suppose Take any vertex in Br; every other vertex in B/Br has at least r'neighburs in common. -> find Kd.d eventually.

Triangles and 4-cycles are special.

clique

biclique

 $avgdeg \geq d$, girth $\geq k$

Triangles and 4-cycles are special.

clique

biclique

 $avgdeg \geq d$, girth $\geq k$

We either find a helpful vertex or win immediately.

Regular graphs are the crux of the matter...

Theorem (DKMR, '11; Pyber, Rödl, Szemerédi, '95) For any D, Δ , there is a graph of avgdeg $\geq D$ with no subgraph of avgdeg ≥ 8 and maximum degree at most Δ .

r cc d, cc ... ccdr

The Chromatic Number $\chi(G)$

The Chromatic Number $\chi(G)$

Theorem (Rödl, 1977)

For any d, every graph with $\chi \ge f(d)$ has a triangle-free subgraph with $\chi \ge d$.

Question (Esperet)

Is it true that for any d, every graph with $\chi \ge f(d)$ has either K_d or a triangle-free graph with $\chi \ge d$ as an induced subgraph?

Thank you!