Colouring visibility graphs

Rose McCarty
Joint work with:
James Davies, Tomasz Krawczyk, and Bartosz Walczak

Matroid Union Seminar
October 2020

*We assume general position.

se

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

- A class is χ-bounded if $\chi \leq f(\omega)$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

- A class is χ-bounded if $\chi \leq f(\omega)$.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

- A class is χ-bounded if $\chi \leq f(\omega)$.
- Was open for polygon visibility graphs (Kára-Pór-Wood).

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

- A class is χ-bounded if $\chi \leq f(\omega)$.
- Was open for polygon visibility graphs (Kára-Pór-Wood).
- It is natural to consider hereditary graph classes.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

- A class is χ-bounded if $\chi \leq f(\omega)$.
- Was open for polygon visibility graphs (Kára-Pór-Wood).
- It is natural to consider hereditary graph classes.

Theorem
Any visibility graph with clique number ω has chromatic number at most $3 \cdot 4^{\omega-1}$.

- A class is χ-bounded if $\chi \leq f(\omega)$.
- Was open for polygon visibility graphs (Kára-Pór-Wood).
- It is natural to consider hereditary graph classes.
"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

Other ways:

- boxicity-2
(Asplund-Branko Grünbaum 60)
- circle
(Gyárfás 85)
- polygon-circle
- grounded x-monotone intersection
- interval filament
- grounded x-monotone disjointness
(Kostochka-Kratochvi 97)
(Suk 14)
(Krawczyk-Walczak 17)
- interval, chordal, (co-)comparability, planar
(Pach-Tomon 20)
see (Gavril 2000)

"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

Other ways:

- boxicity-2
(Asplund-Branko Grünbaum 60)
circle
(Gyárfás 85)
- polygon-circle
- grounded x-monotone intersection
(Kostochka-Kratochvil 97)
- interval filament
- grounded x-monotone disjointness
(Krawczyk-Walczak 17)
- interval, chordal, (co-)comparability, planar
(Pach-Tomon 20)
see (Gavril 2000)

All intersection/disjointness graphs of curves:

"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

Other ways:

- boxicity-2
(Asplund-Branko Grünbaum 60)
circle
(Gyárfás 85)
- polygon-circle
- grounded x-monotone intersection
(Kostochka-Kratochvil 97)
- interval filament
- grounded x-monotone disjointness
(Krawczyk-Walczak 17)
- interval, chordal, (co-)comparability, planar
(Pach-Tomon 20)
see (Gavril 2000)

All intersection/disjointness graphs of curves:

"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

Other ways:

- boxicity-2
(Asplund-Branko Grünbaum 60)
circle
(Gyárfás 85)
- polygon-circle
- grounded x-monotone intersection
(Kostochka-Kratochvil 97)
(Suk 14)
- interval filament
- grounded x-monotone disjointness
(Krawczyk-Walczak 17)
- interval, chordal, (co-)comparability, planar
(Pach-Tomon 20)
see (Gavril 2000)

All intersection/disjointness graphs of curves:

"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

Other ways:

- boxicity-2
(Asplund-Branko Grünbaum 60)
circle
(Gyárfás 85)
- polygon-circle
- grounded x-monotone intersection
(Kostochka-Kratochvi 97)
(Suk 14)
- interval filament
- grounded x-monotone disjointness
(Krawczyk-Walczak 17)
- interval, chordal, (co-)comparability, planar
(Pach-Tomon 20)
see (Gavril 2000)

All intersection/disjointness graphs of curves:

"Visibility" is a new geometric way to construct hereditary, χ-bounded graph classes.

Other ways:

- boxicity-2
(Asplund-Branko Grünbaum 60)
circle
(Gyárfás 85)
- polygon-circle
- grounded x-monotone intersection
(Kostochka-Kratochvil 97)
(Suk 14)
- interval filament
- grounded x-monotone disjointness
(Krawczyk-Walczak 17)
- interval, chordal, (co-)comparability, planar

All intersection/disjointness graphs of curves:

Polygon visibility graphs are fundamental in computational geometry.

Polygon visibility graphs are fundamental in computational geometry.

Polygon visibility graphs are fundamental in computational geometry.

Polygon visibility graphs are fundamental in computational geometry.

- It is NP-Complete to test if $\chi \leq 5$ (Çağırıcı-Hliněný-Roy 19)

Polygon visibility graphs are fundamental in computational geometry.

- It is NP-Complete to test if $\chi \leq 5$ (Çağırıcı-Hliněný-Roy 19)
- but ω can be efficiently computed!
(Ghosh-Shermer-Bhattacharya-Goswami 07)

Polygon visibility graphs are fundamental in computational geometry.

- It is NP-Complete to test if $\chi \leq 5$ (Çağırıcı-Hliněný-Roy 19)
- but ω can be efficiently computed! (Ghosh-Shermer-Bhattacharya-Goswami 07)

Theorem
We can compute ω and find a $\left(3 \cdot 4^{\omega-1}\right)$-colouring of an ordered visibility graph in polynomial time.

$$
\omega \leq \chi \leq 3 \cdot 4^{\omega-1}
$$

Theorem
We can compute ω and find a $\left(3 \cdot 4^{\omega-1}\right)$-colouring of an ordered visibility graph in polynomial time.

Conjecture
The recognition problem is NP -hard.
Is it in NP? (Ghosh-Goswami 13)

Theorem
We can compute ω and find a ($3 \cdot 4^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Theorem
We can compute ω and find a $\left(3 \cdot 4^{\omega-1}\right)$-colouring of an ordered pseudo-visibility graph in polynomial time.

Conjecture
The recognition problem can be solved in polynomial-time. Hamiltonian \longrightarrow in NP (O'Rourke-Streinu 97).

A pseudoline

A pseudoline in a pseudoline arrangement

A pseudoline in a pseudoline arrangement of size $\binom{4}{2}$

A pseudoline in a pseudoline arrangement of size $\binom{4}{2}$, yielding a pseudolinear drawing of K_{4}

A pseudoline in a pseudoline arrangement of size $\binom{4}{2}$, yielding a pseudolinear drawing of K_{4} on the unit circle.

A pseudoline in a pseudoline arrangement of size $\binom{4}{2}$, yielding a pseudolinear drawing of K_{4} on the unit circle.

This defines a pseudo-visibility graph.

A pseudoline in a pseudoline arrangement of size $\binom{4}{2}$, yielding a pseudolinear drawing of K_{4} on the unit circle.

This defines an ordered pseudo-visibility graph.

You can't always go the other way around (Streinu, 05).

*picture from Wikipedia

Babia Góra

Theorem
We can compute ω and find a ($3 \cdot 4^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Theorem

We can compute ω and find a (3.4 $4^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 ${ }^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.

Theorem

We can compute ω and find a (3.4 $4^{\omega-1}$)-colouring of an ordered pseudo-visibility graph in polynomial time.

Proof idea.

1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts, each of which induces a capped subgraph.
3) Colour capped graphs; apply (Scott-Seymour 20).

Conjecture
The recognition problem can be solved in polynomial-time.

Conjecture

The recognition problem can be solved in polynomial-time.
Theorem (Abello-Egecioglu-Kumar 95, Evans-Saeedi 15)
Every Hamiltonian graph excluding the below is an ordered pseudo-visibility graph.

Conjecture
Recognizing ordered pseudo-visibility graphs is in P.
Theorem (Abello-Egecioglu-Kumar 95, Evans-Saeedi 15)
Every Hamiltonian graph excluding the below is an ordered pseudo-visibility graph.

Proof idea.

Proof idea.

(1)

Proof idea.

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$
- ϕ is pre-CC system (Knuth 92)

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$
- ϕ is pre-CC system (Knuth 92)

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$
- ϕ is pre-CC system (Knuth 92)

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$
- ϕ is pre-CC system (Knuth 92)

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$
- ϕ is pre-CC system (Knuth 92)
- ϕ is chirotope of oriented matroid

Proof idea.

- Hamiltonicity \longrightarrow Jordan curve
- $\phi: V(G)^{3} \longrightarrow\{+,-\}$ specifies clockwise/counterclockwise
- Needs to satisfy: $\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$
- ϕ is pre-CC system (Knuth 92)
- ϕ is chirotope of oriented matroid \longrightarrow Folkman-Lawrence

Proof idea.

$\lambda a b \wedge \lambda a c \wedge \lambda a d \wedge \lambda b c \wedge \lambda c d \Longrightarrow \lambda b d$

Conjecture
Recognizing ordered visibility graphs is NP-hard.

Conjecture
Recognizing ordered visibility graphs is NP-hard.
Conjecture
But recognizing ordered pseudo-visibility graphs is in P.

Conjecture

Recognizing ordered visibility graphs is NP-hard.
Conjecture
But recognizing ordered pseudo-visibility graphs is in P.

Conjecture

There is a polynomial p so that every capped graph with clique number ω has chromatic number at most $p(\omega)$.

Conjecture
 Recognizing ordered visibility graphs is NP-hard.

Conjecture
But recognizing ordered pseudo-visibility graphs is in P.

Conjecture

There is a polynomial p so that every capped graph with clique number ω has chromatic number at most $p(\omega)$.

Conjecture (Esperet 17)
The above holds for every hereditary, χ-bounded class.

Conjecture

There is a polynomial p so that every capped graph with clique number ω has chromatic number at most $p(\omega)$.

Conjecture (Esperet 17)
The above holds for every hereditary, χ-bounded class.

Conjecture

There is a polynomial p so that every capped graph with clique number ω has chromatic number at most $p(\omega)$.

Conjecture (Esperet 17)
The above holds for every hereditary, χ-bounded class.

Conjecture

There is a polynomial p so that every capped graph with clique number ω has chromatic number at most $p(\omega)$.

Conjecture (Esperet 17)
The above holds for every hereditary, χ-bounded class.

Conjecture

There is a polynomial p so that every capped graph with clique number ω has chromatic number at most $p(\omega)$.

Conjecture (Esperet 17)
The above holds for every hereditary, χ-bounded class.

Thank you!

