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It is natural to consider hereditary graph classes.

*We assume general position.



Theorem

Any visibility graph with clique number ω has chromatic
number at most 3 · 4ω−1.

A class is χ-bounded if χ ≤ f (ω).
Was open for polygon visibility graphs (Kára-Pór-Wood).
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It is natural to consider hereditary graph classes.

*We assume general position.



Theorem

Any visibility graph with clique number ω has chromatic
number at most 3 · 4ω−1.

A class is χ-bounded if χ ≤ f (ω).
Was open for polygon visibility graphs (Kára-Pór-Wood).
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A pseudoline in a pseudoline arrangement of size
(

4
2

)
,

yielding a pseudolinear drawing of K4 on the unit circle.

This defines an ordered pseudo-visibility graph.
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*picture from Wikipedia



Babia Góra
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Thank you!




