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Curve visibility graphs

Consider a (finite) set of points S on a Jordan curve J .

Points A,B ∈ S are mutually visible if AB ⊆ int(J ).

This defines a curve visibility graph.

It is ordered if it comes with a linear ordering of S , ccw.
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Theorem

There is a polynomial-time algorithm which returns the clique
number ω and a (3 · 4ω−1)-colouring of an ordered curve
visibility graph.

−→

ω ≤ χ ≤ 3 · 4ω−1

NP-Complete to test if χ ≤ 5 (Çağırıcı, Hliněný, Roy, 19)
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A class is χ-bounded if there exists f so that every graph
in the class with clique number ω has χ ≤ f (ω).

There exist graphs with χ arbitrarily large and ω = 2.

So the class of curve visibility graphs is χ-bounded.

This was open even for polygon visibility graphs.
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Where are we?

The class of curve visibility graphs is hereditary (closed
under deleting vertices) and χ-bounded (χ ≤ f (ω)).

The bounds ω ≤ χ ≤ 3 · 4ω−1 can be obtained in
polynomial time when the input graph is ordered.

GP polygon visibility graphs are a nice, but not
hereditary, subclass.
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Conjecture (Esperet, 17)

Every hereditary, χ-bounded class is polynomially
χ-bounded.

χ ≤ 3 · 4ω−1

χ ≤ ωωωωωω

. . .

−→ χ ≤ ωd

That is, there exists a polynomial p so that every graph
in the class with clique number ω has χ ≤ p(ω).

We believe that curve visibility graphs are
polynomially χ-bounded.
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S is a set of points

A and B are mutually visible if AB intersects no vertices.

Point visibility graphs with ω ≤ 3 have χ ≤ 3
(Kára, Pór, Wood, 05).

But they are not χ-bounded (Pfender, 08).
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Curve pseudovisibility graphs

(O’Rourke, Streinu, 97)
(Abello, Kumar, 02)

←−

Consider a GP curve visibility graph and line arrangement.

There is a homeomorphism moving J to the unit circle C .

The line arrangement yields a pseudoline arrangement.

If we start with any pseudolinear drawing of Kn on C ,
then we obtain a curve pseudovisibility graph.
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Theorem

There is a polynomial-time algorithm which returns the clique
number ω and a (3 · 4ω−1)-colouring of an ordered curve
pseudovisibility graph.

−→
the clique number ω

and

a (3 · 4ω−1)-colouring
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The black part is triangle-free and capped.
The red part has clique number < ω and is capped.
So continue within red part.
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Proof Sketch (χ ≤ 3 · 4ω−1).
1) We define an infinite family of ordered graphs H so that

no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
ω − 1 triangle-free capped graphs.

This is how we compute the clique number ω of a capped
graph, which is used as a subroutine.



Proof Sketch (χ ≤ 3 · 4ω−1).
1) We define an infinite family of ordered graphs H so that

no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
ω − 1 triangle-free capped graphs.

4) Colour triangle-free capped graphs.
Some extra work is required to get the bound of 4.



Open Problems

1) Are visibility graphs a good source of new hereditary,
χ-bounded graph classes?

vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be
recognized in polynomial time?

seems likely: see (Abello, Kumar, 02)

3) Are capped graphs polynomially χ-bounded?
(i.e. is there a polynomial p such that χ ≤ p(ω)?)
special case of the conjecture of (Esperet, 17).
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Open Problems

1) Are visibility graphs a good source of new hereditary,
χ-bounded graph classes?

vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be
recognized in polynomial time?

seems likely: see (Abello, Kumar, 02)

3) Are capped graphs polynomially χ-bounded?
(i.e. is there a polynomial p such that χ ≤ p(ω)?)
special case of the conjecture of (Esperet, 17).
would imply that curve pseudovisibility graphs are
polynomially χ-bounded.

The forbidden configuration for capped graphs.



Thank you!


