Colouring visibility graphs

Rose McCarty

Joint work with:

James Davies, Tomasz Krawczyk, and Bartosz Walczak

September 2020

- Consider a (finite) set of points S on a Jordan curve J.
 Points A, B ∈ S are mutually visible if AB ⊆ int(J).
 This defines a curve visibility graph.
- It is **ordered** if it comes with a linear ordering of *S*, ccw.

- Consider a (finite) set of points S on a Jordan curve \mathcal{J} .
- Points $A, B \in S$ are **mutually visible** if $\overline{AB} \subseteq int(\mathcal{J})$.
- This defines a curve visibility graph.
- It is **ordered** if it comes with a linear ordering of *S*, ccw.

- Consider a (finite) set of points S on a Jordan curve \mathcal{J} .
- Points $A, B \in S$ are **mutually visible** if $\overline{AB} \subseteq int(\mathcal{J})$.
- This defines a curve visibility graph.
- It is ordered if it comes with a linear ordering of S, ccw.

- Consider a (finite) set of points S on a Jordan curve \mathcal{J} .
- Points $A, B \in S$ are **mutually visible** if $\overline{AB} \subseteq int(\mathcal{J})$.
- This defines a curve visibility graph.

 It is ordered if it comes with a linear ordering of S, ccw.
 (Start anywhere then go in conterclockwise order)

- A **colouring** assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $conv(W) \subseteq int(\mathcal{J}) \cup W$.
- Chromatic number $\chi = \min \#$ of colours in a colouring
- Clique number $\omega = \max \#$ of vertices in a clique

- A **colouring** assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $conv(W) \subseteq int(\mathcal{J}) \cup W$.
- Chromatic number $\chi = \min \#$ of colours in a colouring
- Clique number $\omega = \max \#$ of vertices in a clique

- A **colouring** assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $conv(W) \subseteq int(\mathcal{J}) \cup W$.
- Chromatic number $\chi = \min \#$ of colours in a colouring
- Clique number $\omega = \max \#$ of vertices in a clique

- A **colouring** assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $conv(W) \subseteq int(\mathcal{J}) \cup W$.
- Chromatic number $\chi = \min \#$ of colours in a colouring
- Clique number $\omega = \max \#$ of vertices in a clique

- A **colouring** assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $conv(W) \subseteq int(\mathcal{J}) \cup W$.
- Chromatic number $\chi = \min \#$ of colours in a colouring
- Clique number $\omega = \max \#$ of vertices in a clique

Theorem

There is a polynomial-time algorithm which returns the clique number ω and a $(3 \cdot 4^{\omega-1})$ -colouring of an ordered curve visibility graph.

• NP-Complete to test if $\chi \leq$ 5 (Çağırıcı, Hliněný, Roy, 19)

Theorem

There is a polynomial-time algorithm which returns the clique number ω and a $(3 \cdot 4^{\omega-1})$ -colouring of an ordered curve visibility graph.

• NP-Complete to test if $\chi \leq 5$ (Çağırıcı, Hliněný, Roy, 19) (for ordere d polygon visibility graphs)

- A class is χ-bounded if there exists f so that every graph in the class with clique number ω has χ ≤ f(ω).
- There exist graphs with χ arbitrarily large and $\omega = 2$.
- So the class of **curve visibility graphs** is χ -bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

- A class is χ -**bounded** if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega = 2$.
- So the class of curve visibility graphs is χ -bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

- A class is χ -**bounded** if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega = 2$.
- So the class of **curve visibility graphs** is χ -bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

- A class is χ -**bounded** if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega = 2$.
- So the class of **curve visibility graphs** is χ -bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

Polygon visibility graphs

- A **GP** polygon visibility graph is a curve visibility graph where *S* is in GP and consecutive vertices are adjacent.
- There is an O(n²m) algorithm to compute ω.
 (Ghosh, Shermer, Bhattacharya, Goswami, 07)

Polygon visibility graphs

- A **GP** polygon visibility graph is a curve visibility graph where *S* is in GP and consecutive vertices are adjacent.
- There is an O(n²m) algorithm to compute ω.
 (Ghosh, Shermer, Bhattacharya, Goswami, 07)

Polygon visibility graphs

- A **GP** polygon visibility graph is a curve visibility graph where *S* is in GP and consecutive vertices are adjacent.
- There is an O(n²m) algorithm to compute ω.
 (Ghosh, Shermer, Bhattacharya, Goswami, 07)

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of **polygon visibility graphs** is NOT.

- A class is hereditary if it is closed under deleting vertices.
- The class of **curve visibility graphs** is hereditary.
- The class of **polygon visibility graphs** is NOT.

Where are we?

- The class of curve visibility graphs is hereditary (closed under deleting vertices) and χ-bounded (χ ≤ f(ω)).
- The bounds ω ≤ χ ≤ 3 ⋅ 4^{ω−1} can be obtained in polynomial time when the input graph is ordered.
- **GP polygon visibility graphs** are a nice, but not hereditary, subclass.

Where are we?

- The class of curve visibility graphs is hereditary (closed under deleting vertices) and χ-bounded (χ ≤ f(ω)).
- The bounds ω ≤ χ ≤ 3 ⋅ 4^{ω−1} can be obtained in polynomial time when the input graph is ordered.
- GP polygon visibility graphs are a nice, but not hereditary, subclass.

Where are we?

- The class of curve visibility graphs is hereditary (closed under deleting vertices) and χ -bounded ($\chi \leq f(\omega)$).
- The bounds ω ≤ χ ≤ 3 ⋅ 4^{ω-1} can be obtained in polynomial time when the input graph is ordered.
- GP polygon visibility graphs are a nice, but not hereditary, subclass.

Conjecture (Esperet, 17)

Every hereditary, χ -bounded class is **polynomially** χ -**bounded**.

- That is, there exists a **polynomial** p so that every graph in the class with clique number ω has $\chi \leq p(\omega)$.
- We believe that curve visibility graphs are polynomially χ-bounded.

Conjecture (Esperet, 17)

Every hereditary, χ -bounded class is **polynomially** χ -**bounded**.

- That is, there exists a **polynomial** p so that every graph in the class with clique number ω has $\chi \leq p(\omega)$.
- We believe that curve visibility graphs are polynomially χ-bounded.

Mostly defined by ...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
 - intersection/disjointness graphs
 - visibility graphs?

Mostly defined by ...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
 - intersection/disjointness graphs
 - visibility graphs?

Mostly defined by ...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
 - intersection/disjointness graphs
 - visibility graphs?

Mostly defined by ...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
 - intersection/disjointness graphs
 - visibility graphs?

- Consider a set *S* of disjoint shapes in the plane and some (possible empty) obstacle *J* ⊂ ℝ².
- The **visibility graph** has vertex set *S* and an edge for each pair of **mutually visible** shapes in *S*.
- Without extra restrictions, every graph is a visibility graph.

- Consider a set *S* of disjoint shapes in the plane and some (possible empty) obstacle *J* ⊂ ℝ².
- The visibility graph has vertex set S and an edge for each pair of mutually visible shapes in S.

• Without extra restrictions, every graph is a visibility graph.

- Consider a set *S* of disjoint shapes in the plane and some (possible empty) obstacle *J* ⊂ ℝ².
- The visibility graph has vertex set S and an edge for each pair of mutually visible shapes in S.
- Without extra restrictions, every graph is a visibility graph.

	hereditary?	χ -bounded?
Curve visibility		
Bar k-visibility		
Point visibility		
Curve pseudovisibility		

Bar k-visibility graphs $(k = \infty)$ is allowed

• S is a set of horizontal closed segments

 A and B are mutually visible if they can be joined by a vertical segment which intersects ≤ k other intervals.

- S is a set of horizontal closed segments
- A and B are mutually visible if they can be joined by a vertical segment which intersects ≤ k other intervals.

- S is a set of horizontal closed segments
- A and B are mutually visible if they can be joined by a vertical segment which intersects ≤ k other intervals.

• $k = \infty$: interval graphs

- k = 0: can be characterized by a connection to planar triangulations (Luccio, Mazzone, Wong, 87)
- k < ∞: bounded average degree (Dean, Evans, Gethner, Laison, Safari, Trotter, 06)

- $k = \infty$: interval graphs
- k = 0: can be characterized by a connection to planar triangulations (Luccio, Mazzone, Wong, 87)
- k < ∞: bounded average degree (Dean, Evans, Gethner, Laison, Safari, Trotter, 06)

- $k = \infty$: interval graphs
- k = 0: can be characterized by a connection to planar triangulations (Luccio, Mazzone, Wong, 87)
- k < ∞: bounded average degree (Dean, Evans, Gethner, Laison, Safari, Trotter, 06)

	hereditary?	χ -bounded?
Curve visibility		\checkmark
Bar k-visibility	mostly	
Point visibility		
Curve pseudovisibility		

Point visibility graphs

- S is a set of points
- A and B are **mutually visible** if \overline{AB} intersects no vertices.
- Point visibility graphs with $\omega \leq 3$ have $\chi \leq 3$ (Kára, Pór, Wood, 05).
- But they are not χ -bounded (Pfender, 08).

Point visibility graphs

- S is a set of points
- A and B are **mutually visible** if \overline{AB} intersects no vertices.
- Point visibility graphs with $\omega \leq 3$ have $\chi \leq 3$ (Kára, Pór, Wood, 05).
- But they are not χ -bounded (Pfender, 08).

Point visibility graphs

- S is a set of points
- A and B are **mutually visible** if \overline{AB} intersects no vertices.
- Point visibility graphs with $\omega \leq 3$ have $\chi \leq 3$ (Kára, Pór, Wood, 05).
- But they are not χ -bounded (Pfender, 08).

	hereditary?	χ -bounded?
Curve visibility		
Bar k-visibility	mostly	
Point visibility	X	X
Curve pseudovisibility		

• Consider a GP curve visibility graph...

• Consider a GP curve visibility graph and line arrangement.

• Consider a GP curve visibility graph and line arrangement.

• There is a homeomorphism moving \mathcal{J} to the unit circle C.

• Consider a GP curve visibility graph and line arrangement.

- There is a homeomorphism moving \mathcal{J} to the unit circle C.
- The line arrangement yields a pseudoline arrangement. (A set of closed curves which break the plane into two unbounded regions, s. t. every plane intersect exactly one, where they cross.)

- Consider a GP curve visibility graph and line arrangement.
- There is a homeomorphism moving \mathcal{J} to the unit circle C.
- The line arrangement yields a **pseudoline arrangement**.
- If we start with any pseudolinear drawing of Kn on C...
 c cin be extended to a pseudoline
 c cin rangement of (2) pseudolines

- Consider a GP curve visibility graph and line arrangement.
- There is a homeomorphism moving \mathcal{J} to the unit circle C.
- The line arrangement yields a **pseudoline arrangement**.
- If we start with *any* **pseudolinear** drawing of K_n on C, then we obtain a **curve pseudovisibility graph**.

	hereditary?	χ -bounded?
Curve visibility		\checkmark
Bar k-visibility	mostly	\checkmark
Point visibility	X	X
Curve pseudovisibility		?

Theorem

There is a polynomial-time algorithm which returns the clique number ω and a $(3 \cdot 4^{\omega-1})$ -colouring of an ordered curve pseudovisibility graph.

the clique number ω and a $(3\cdot 4^{\omega-1})$ -colouring

		hereditary?	χ -bounded?
1	Curve visibility		
/	Bar k-visibility	mostly	
C	Point visibility	\mathbf{X}	X
5	Curve pseudovisibility		

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

i.e. ordered curve pseudovisibility graphs are H-free.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in ${\mathcal H}$

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in ${\mathcal H}$

A curve visibility graph

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Why are these graphs not curve pseudovisibility graphs?

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in ${\mathcal H}$

A curve visibility graph

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Why are these graphs not curve pseudovisibility graphs?

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in ${\mathcal H}$

A curve visibility graph

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Why are these graphs not curve pseudovisibility graphs?

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

The forbidden configuration.

An ordered graph is **capped** if whenever a < b < c < dand $ac, bd \in E(G)$, then $ad \in E(G)$ as well.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

The forbidden configuration.

An ordered graph is **capped** if whenever a < b < c < dand $ac, bd \in E(G)$, then $ad \in E(G)$ as well.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

Fix e; colour all vertices which can see an interior point on e.
This induces a capped subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

Fix e; colour all vertices which can see an interior point on e.
This induces a capped subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.
- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

Fix e; colour all vertices which can see an interior point on e.
This induces a capped subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a **capped** subgraph.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The **red** part has clique number $< \omega$ and is **capped**.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number < ω and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $< \omega$ and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $\leq \omega$ and is capped.
- So continue within **red** part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $< \omega$ and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $< \omega$ and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $<\!\!\!/\omega$ and is capped.
- So continue within **red** part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $< \omega$ and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $< \omega$ and is capped.
- So continue within red part.

- 1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
- 2) Use 1) to partition the vertex set into 3 sets, each of which induces a **capped** subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

• This is how we compute the clique number ω of a capped graph, which is used as a subroutine.

- 1) We define an infinite family of ordered graphs ${\cal H}$ so that no graph in ${\cal H}$ can be obtained by deleting vertices.
- Use 1) to partition the vertex set into 3 sets, each of which induces a <u>capped</u> subgraph.
- 3) Find an edge partition of each of the 3 capped graphs into $\omega 1$ triangle-free capped graphs.

R-bow .. ed by (Scott, Seynar, 20)

- 4) Colour triangle-free capped graphs.
 - Some extra work is required to get the bound of 4. Also for bird every induced subdivision of

1) Are visibility graphs a good source of new hereditary, χ -bounded graph classes?

• vague: Number of holes? How well-structured are they?

2) Can **ordered curve pseudovisibility graphs** be recognized in polynomial time?

seems likely: see (Abello, Kumar, 02)

- 3) Are capped graphs **polynomially** χ **-bounded**?
 - (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
 - special case of the conjecture of (Esperet, 17).

1) Are visibility graphs a good source of new hereditary, χ -bounded graph classes?

• vague: Number of holes? How well-structured are they?

2) Can **ordered curve pseudovisibility graphs** be recognized in polynomial time?

• seems likely: see (Abello, Kumar, 02)

- 3) Are capped graphs **polynomially** χ **-bounded**?
 - (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
 - special case of the conjecture of (Esperet, 17).

1) Are visibility graphs a good source of new hereditary, χ -bounded graph classes?

• vague: Number of holes? How well-structured are they?

2) Can **ordered curve pseudovisibility graphs** be recognized in polynomial time?

• seems likely: see (Abello, Kumar, 02)

- 3) Are capped graphs polynomially χ -bounded?
 - (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
 - special case of the conjecture of (Esperet, 17).

1) Are visibility graphs a good source of new hereditary, χ -bounded graph classes?

• vague: Number of holes? How well-structured are they?

2) Can **ordered curve pseudovisibility graphs** be recognized in polynomial time?

• seems likely: see (Abello, Kumar, 02)

- 3) Are capped graphs **polynomially** χ -**bounded**?
 - (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
 - special case of the conjecture of (Esperet, 17).

1) Are **visibility graphs** a good source of new hereditary, χ -bounded graph classes?

• vague: Number of holes? How well-structured are they?

2) Can **ordered curve pseudovisibility graphs** be recognized in polynomial time?

• seems likely: see (Abello, Kumar, 02)

- 3) Are capped graphs **polynomially** χ -**bounded**?
 - (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
 - special case of the conjecture of (Esperet, 17).
 - would imply that **curve pseudovisibility graphs** are polynomially χ -bounded.

The forbidden configuration for capped graphs.

Thank you!