Colouring visibility graphs

Rose McCarty
Joint work with:
James Davies, Tomasz Krawczyk, and Bartosz Walczak

September 2020

Curve visibility graphs

- Consider a (finite) set of points S on a Jordan curve \mathcal{J}.
- Points $A, B \in S$ are mutually visible if $\overline{A B} \subseteq \operatorname{int}(\mathcal{J})$.
- This defines a curve visibility graph.
- It is ordered if it comes with a linear ordering of S, ccw.

Curve visibility graphs

- Consider a (finite) set of points S on a Jordan curve \mathcal{J}.
- Points $A, B \in S$ are mutually visible if $\overline{A B} \subseteq \operatorname{int}(\mathcal{J})$.
- This defines a curve visibility graph.
- It is ordered if it comes with a linear ordering of S, ccw.

Curve visibility graphs

- Consider a (finite) set of points S on a Jordan curve \mathcal{J}.
- Points $A, B \in S$ are mutually visible if $\overline{A B} \subseteq \operatorname{int}(\mathcal{J})$.
- This defines a curve visibility graph.
- It is ordered if it comes with a linear ordering of S, ccw.

Curve visibility graphs

- Consider a (finite) set of points S on a Jordan curve \mathcal{J}.
- Points $A, B \in S$ are mutually visible if $\overline{A B} \subseteq \operatorname{int}(\mathcal{J})$.
- This defines a curve visibility graph.
- It is ordered if it comes with a linear ordering of S, caw.
(Start anywhere then go in
(counterclockwise order)

Curve visibility graphs

- A colouring assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $\operatorname{conv}(W) \subseteq \operatorname{int}(\mathcal{J}) \cup W$.
- Chromatic number $\chi=\min \#$ of colours in a colouring
- Clique number $\omega=$ max $\#$ of vertices in a clique

Curve visibility graphs

- A colouring assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $\operatorname{conv}(W) \subseteq \operatorname{int}(\mathcal{J}) \cup W$.
- Chromatic number $\chi=$ min $\#$ of colours in a colouring

Curve visibility graphs

- A colouring assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $\operatorname{conv}(W) \subseteq \operatorname{int}(\mathcal{J}) \cup W$.
- Chromatic number $\chi=$ min \# of colours in a colouring
- Clique number $\omega=$ max $\#$ of vertices in a clique

Curve visibility graphs

- A colouring assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $\operatorname{conv}(W) \subseteq \operatorname{int}(\mathcal{J}) \cup W$.
- Chromatic number $\chi=$ min \# of colours in a colouring
- Clique number $\omega=$ max $\#$ of vertices in a clique

Curve visibility graphs

- A colouring assigns colours to vertices so that no two vertices of the same colour are mutually visible.
- A clique is a set W such that $\operatorname{conv}(W) \subseteq \operatorname{int}(\mathcal{J}) \cup W$.
- Chromatic number $\chi=\min \#$ of colours in a colouring
- Clique number $\omega=\max \#$ of vertices in a clique

Theorem

There is a polynomial-time algorithm which returns the clique number ω and a $\left(3 \cdot 4^{\omega-1}\right)$-colouring of an ordered curve visibility graph.

$$
\omega \leq \chi \leq 3 \cdot 4^{\omega-1}
$$

- NP-Complete to test if $\chi \leq 5$ (Çağırıcı, Hliněný, Roy, 19)

Theorem

There is a polynomial-time algorithm which returns the clique number ω and a $\left(3 \cdot 4^{\omega-1}\right)$-colouring of an ordered curve visibility graph.

$$
\omega \leq \chi \leq 3 \cdot 4^{\omega-1}
$$

- NP-Complete to test if $\chi \leq 5$ (Çağırıcı, Hliněný, Roy, 19) (for ordered polygon visibility graphs)

χ-bounded graph classes

- A class is χ-bounded if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega=2$.
- So the class of curve visibility graphs is χ-bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

χ-bounded graph classes

- A class is χ-bounded if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega=2$.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

χ-bounded graph classes

- A class is χ-bounded if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega=2$.
- So the class of curve visibility graphs is χ-bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

χ-bounded graph classes

- A class is χ-bounded if there exists f so that every graph in the class with clique number ω has $\chi \leq f(\omega)$.
- There exist graphs with χ arbitrarily large and $\omega=2$.
- So the class of curve visibility graphs is χ-bounded.
- This was open even for polygon visibility graphs. (Kára, Pór, Wood, 05)

Polygon visibility graphs

- A GP polygon visibility graph is a curve visibility graph where S is in GP and consecutive vertices are adjacent.
- There is an $\mathcal{O}\left(n^{2} m\right)$ algorithm to compute ω.
(Ghosh, Shermer, Bhattacharya, Goswami, 07)

Polygon visibility graphs

- A GP polygon visibility graph is a curve visibility graph where S is in GP and consecutive vertices are adjacent.
- There is an $\mathcal{O}\left(n^{2} m\right)$ algorithm to compute ω.
(Ghosh, Shermer, Bhattacharya, Goswami, 07)

Polygon visibility graphs

- A GP polygon visibility graph is a curve visibility graph where S is in GP and consecutive vertices are adjacent.
- There is an $\mathcal{O}\left(n^{2} m\right)$ algorithm to compute ω. (Ghosh, Shermer, Bhattacharya, Goswami, 07)

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Hereditary graph classes

- A class is hereditary if it is closed under deleting vertices.
- The class of curve visibility graphs is hereditary.
- The class of polygon visibility graphs is NOT.

Where are we?

- The class of curve visibility graphs is hereditary (closed under deleting vertices) and χ-bounded $(\chi \leq f(\omega))$.
- The bounds $\omega \leq \chi \leq 3 \cdot 4^{\omega-1}$ can be obtained in polynomial time when the input graph is ordered.
- GP polygon visibility graphs are a nice, but not hereditary, subclass.

Where are we?

- The class of curve visibility graphs is hereditary (closed under deleting vertices) and χ-bounded $(\chi \leq f(\omega))$.
- The bounds $\omega \leq \chi \leq 3 \cdot 4^{\omega-1}$ can be obtained in polynomial time when the input graph is ordered.
- GP polygon visibility graphs are a nice, but not hereditary, subclass.

Where are we?

- The class of curve visibility graphs is hereditary (closed under deleting vertices) and χ-bounded $(\chi \leq f(\omega))$.
- The bounds $\omega \leq \chi \leq 3 \cdot 4^{\omega-1}$ can be obtained in polynomial time when the input graph is ordered.
- GP polygon visibility graphs are a nice, but not hereditary, subclass.

Hereditary, χ-bounded classes

Conjecture (Esperet, 17)
Every hereditary, χ-bounded class is polynomially χ-bounded.

$$
\begin{aligned}
& \chi \leq 3 \cdot 4^{\omega-1} \\
& \chi \leq \omega^{\omega^{\omega^{\omega}}}
\end{aligned} \quad \longrightarrow \quad \chi \leq \omega^{d}
$$

- That is, there exists a polynomial p so that every graph in the class with clique number ω has $\chi \leq p(\omega)$.
polynomially χ-bounded.

Hereditary, χ-bounded classes

Conjecture (Esperet, 17)
Every hereditary, χ-bounded class is polynomially χ-bounded.

$$
\begin{aligned}
& \chi \leq 3 \cdot 4^{\omega-1} \\
& \chi \leq \omega^{\omega^{\omega^{\omega}}}
\end{aligned} \quad \longrightarrow \quad \chi \leq \omega^{d}
$$

- That is, there exists a polynomial p so that every graph in the class with clique number ω has $\chi \leq p(\omega)$.
- We believe that curve visibility graphs are polynomially χ-bounded.

Hereditary, χ-bounded classes

Mostly defined by...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
intersection/disjointness graphs visibility graphs?

Hereditary, χ-bounded classes

Mostly defined by...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
- intersection/disjointness graphs

(Rok, Walczak, 19)

Hereditary, χ-bounded classes

Mostly defined by...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
- intersection/disjointness graphs

(Rok, Walczak, 19)

Hereditary, χ-bounded classes

Mostly defined by...

- forbidden substructures
- basic classes + operations/decompositions
- geometric representations
- intersection/disjointness graphs
- visibility graphs?

Visibility graphs

- Consider a set S of disjoint shapes in the plane and some (possible empty) obstacle $J \subset \mathbb{R}^{2}$.
- The visibility graph has vertex set S and an edge for each pair of mutually visible shapes in S.
- Without extra restrictions, every graph is a visibility graph.

Visibility graphs

- Consider a set S of disjoint shapes in the plane and some (possible empty) obstacle $J \subset \mathbb{R}^{2}$.
- The visibility graph has vertex set S and an edge for each pair of mutually visible shapes in S.

Visibility graphs

- Consider a set S of disjoint shapes in the plane and some (possible empty) obstacle $J \subset \mathbb{R}^{2}$.
- The visibility graph has vertex set S and an edge for each pair of mutually visible shapes in S.
- Without extra restrictions, every graph is a visibility graph.

Visibility graphs

	hereditary?	χ-bounded?
Curve visibility		
Bar k-visibility		
Point visibility		
Curve pseudovisibility		

Bar k-visibility graphs $(k=\infty$ is allowed)

- S is a set of horizontal closed segments
- A and B are mutually visible if they can be joined by a vertical segment which intersects $\leq k$ other intervals.

Bar k-visibility graphs

- S is a set of horizontal closed segments
- A and B are mutually visible if they can be joined by a vertical segment which intersects $\leq k$ other intervals.

Bar k-visibility graphs

- S is a set of horizontal closed segments
- A and B are mutually visible if they can be joined by a vertical segment which intersects $\leq k$ other intervals.

Bar k-visibility graphs

- $k=\infty$: interval graphs
- $k=0$: can be characterized by a connection to planar triangulations (Luccio, Mazzone, Wong, 87)
- $k<\infty$: bounded average degree
(Dean, Evans, Gethner, Laison, Safari, Trotter, 06)

Bar k-visibility graphs

- $k=\infty$: interval graphs
- $k=0$: can be characterized by a connection to planar triangulations (Luccio, Mazzone, Wong, 87)
- $k<\infty$: bounded average degree
(Dean, Evans, Gethner, Laison, Safari, Trotter, 06)

Bar k-visibility graphs

- $k=\infty$: interval graphs
- $k=0$: can be characterized by a connection to planar triangulations (Luccio, Mazzone, Wong, 87)
- $k<\infty$: bounded average degree
(Dean, Evans, Gethner, Laison, Safari, Trotter, 06)

Visibility graphs

	hereditary?	χ-bounded?
Curve visibility		
Bar k-visibility	mostly	
Point visibility		
Curve pseudovisibility		

Point visibility graphs

- S is a set of points
- A and B are mutually visible if $\overline{A B}$ intersects no vertices.
- Point visibility graphs with $\omega \leq 3$ have $\chi \leq 3$ (Kára, Pór, Wood, 05).
- But they are not χ-bounded (Pfender, 08).

Point visibility graphs

- S is a set of points
- A and B are mutually visible if $\overline{A B}$ intersects no vertices.
- Point visibility graphs with $\omega \leq 3$ have $\chi \leq 3$ (Kára, Pór, Wood, 05).
- But they are not χ-bounded (Pfender, 08).

Point visibility graphs

- S is a set of points
- A and B are mutually visible if $\overline{A B}$ intersects no vertices.
- Point visibility graphs with $\omega \leq 3$ have $\chi \leq 3$ (Kára, Pór, Wood, 05).
- But they are not χ-bounded (Pfender, 08).

Visibility graphs

	hereditary?	χ-bounded?
Curve visibility		
Bar k-visibility	mostly	
Point visibility	\times	
Curve pseudovisibility		

Curve pseudovisibility graphs

- Consider a GP curve visibility graph...

Curve pseudovisibility graphs

- Consider a GP curve visibility graph and line arrangement.

Curve pseudovisibility graphs

- Consider a GP curve visibility graph and line arrangement.
- There is a homeomorphism moving \mathcal{J} to the unit circle C.

Curve pseudovisibility graphs

- Consider a GP curve visibility graph and line arrangement.
- There is a homeomorphism moving \mathcal{J} to the unit circle C.
- The line arrangement yields a pseudoline arrangement. (A set of closed cures which break the plane into two unbounded regions, sit. every pair intersect exactly once, where they cross.)

Curve pseudovisibility graphs

- Consider a GP curve visibility graph and line arrangement.
- There is a homeomorphism moving \mathcal{J} to the unit circle C.
- The line arrangement yields a pseudoline arrangement.
- If we start with any pseudolinear drawing of K_{n} on C... CCI he extended to a psecdulinc cir rangement of ($\tilde{2}$) psecudulimes

Curve pseudovisibility graphs

A pseudolinecir drawing of K_{4}
(O'Rourke, Streinu, 97) (Abello, Kumar, 02)

- Consider a GP curve visibility graph and line arrangement.
- There is a homeomorphism moving \mathcal{J} to the unit circle C.
- The line arrangement yields a pseudoline arrangement.
- If we start with any pseudolinear drawing of K_{n} on C, then we obtain a curve pseudovisibility graph.

Visibility graphs

	hereditary?	χ-bounded?
Curve visibility		
Bar k-visibility	mostly	
Point visibility	\times	
Curve pseudovisibility		$?$

Theorem
There is a polynomial-time algorithm which returns the clique number ω and a $\left(3 \cdot 4^{\omega-1}\right)$-colouring of an ordered curve pseudovisibility graph.

the clique number ω and
a $\left(3 \cdot 4^{\omega-1}\right)$-colouring

Visibility graphs

	hereditary?	χ-bounded?
Curve visibility		
	Bar k-visibility	mostly
	Point visibility	X
	Curve pseudovisibility	

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
i.e. ordered curve pseuduvisibility graphs are 7 -free.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in \mathcal{H}
Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in \mathcal{H}

A curve visibility graph

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Why are these graphs not curve pseudovisibility graphs?

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in \mathcal{H}

A curve visibility graph

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Why are these graphs not curve pseudovisibility graphs?

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.

A graph in \mathcal{H}

A curve visibility graph

Graphs in \mathcal{H} have non-adjacent vertices u and v which are connected on each side by a "path of crossing edges".

Why are these graphs not curve pseudovisibility graphs?

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

The forbidden configuration.

An ordered graph is capped if whenever $a<b<c<d$ and $a c, b d \in E(G)$, then $a d \in E(G)$ as well.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

The forbidden configuration.

An ordered graph is capped if whenever $a<b<c<d$ and $a c, b d \in E(G)$, then $a d \in E(G)$ as well.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.

Based un (Sori, 86)

- Fix e; colour all vertices which can see an interior point on e.
- This induces a capped subgraph.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- The black part is triangle-free and capped.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.
Take every edge in:

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $\leqslant \omega$ and is capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $<\omega$ and is capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $<\omega$ and is capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and qapped.
- The red part has clique number $\sqrt{\omega}$ and is capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $<\omega$ and is capped.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- Consider a capped graph.
- Color all edges "underneath the right side of any triangle" red.
- The black part is triangle-free and capped.
- The red part has clique number $<\omega$ and is capped.
- So continue within red part.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.

- This is how we compute the clique number ω of a capped graph, which is used as a subroutine.

Proof Sketch $\left(\chi \leq 3 \cdot 4^{\omega-1}\right)$.

1) We define an infinite family of ordered graphs \mathcal{H} so that no graph in \mathcal{H} can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into $\omega-1$ triangle-free capped graphs.
4) Colour triangle-free capped graphs.

- Some extra work is required to get the bound of 4.

Open Problems

1) Are visibility graphs a good source of new hereditary, χ-bounded graph classes?

- vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be recognized in polynomial time?

- seems likely: see (Abello, Kumar, 02)

3) Are capped graphs pollynomially χ-bounded?

- (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
- special case of the conjecture of (Esperet, 17).

Open Problems

1) Are visibility graphs a good source of new hereditary, χ-bounded graph classes?

- vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be recognized in polynomial time?

- seems likely: see (Abello, Kumar, O2)

3) Are capped graphs polynomially χ-bounded?

- (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
- special case of the conjecture of (Esperet, 17).

Open Problems

1) Are visibility graphs a good source of new hereditary, χ-bounded graph classes?

- vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be recognized in polynomial time?

- seems likely: see (Abello, Kumar, 02)

3) Are caped graphs polynomially x-bounded?

Open Problems

1) Are visibility graphs a good source of new hereditary, χ-bounded graph classes?

- vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be recognized in polynomial time?

- seems likely: see (Abello, Kumar, 02)

3) Are capped graphs polynomially χ-bounded?

- (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
- special case of the conjecture of (Esperet, 17).

Open Problems

1) Are visibility graphs a good source of new hereditary, χ-bounded graph classes?

- vague: Number of holes? How well-structured are they?

2) Can ordered curve pseudovisibility graphs be recognized in polynomial time?

- seems likely: see (Abello, Kumar, 02)

3) Are capped graphs polynomially χ-bounded?

- (i.e. is there a polynomial p such that $\chi \leq p(\omega)$?)
- special case of the conjecture of (Esperet, 17).
- would imply that curve pseudovisibility graphs are polynomially χ-bounded.

The forbidden configuration for capped graphs.

Thank you!

