Rank-width, circle graphs, and vertex-minors

Rose McCarty
Department of Combinatorics and Optimization
(asi WATERITYOF

Width Parameters

March 2021

Theorem (Robertson-Seymour-86)
Every graph of tree-width $\geq f(t)$ has a $t \times t$ grid as a minor.

as a minor

Theorem (Geelen-Kwon-McCarty-Wollan-20)
Every graph of rank-width $\geq f(t)$ has a $t \times t$ comparability grid as a vertex-minor.

No

as a vertex-minor

Theorem (Geelen-Kwon-McCarty-Wollan-20)
Every graph of rank-width $\geq f(t)$ has a $t \times t$ comparability grid as a vertex-minor.

No

as a vertex-minor

Theorem (Geelen-Kwon-McCarty-Wollan-20)
Every graph of rank-width $\geq f(t)$ has a $t \times t$ comparability grid as a vertex-minor.

- $\operatorname{rw}(G) \leq \operatorname{clique-width}(G) \leq 2^{\mathrm{rw}(G)+1}$ (Oum-Seymour-06)
- Comparability grids have rw $=\Theta(t)$.

Theorem (Geelen-Kwon-McCarty-Wollan-20)
Every graph of rank-width $\geq f(t)$ has a $t \times t$ comparability grid as a vertex-minor.

- $\operatorname{rw}(G) \leq \operatorname{clique-width}(G) \leq 2^{\mathrm{rw}(G)+1}$ (Oum-Seymour-06)
- H a vertex-minor of $G \Longrightarrow \operatorname{rw}(H) \leq \operatorname{rw}(G)$.
- Comparability grids have rw $=\Theta(t)$.

Theorem (Geelen-Kwon-McCarty-Wollan-20)
Every graph of rank-width $\geq f(t)$ has a $t \times t$ comparability grid as a vertex-minor.

- $\operatorname{rw}(G) \leq \operatorname{clique-width}(G) \leq 2^{\mathrm{rw}(G)+1}$ (Oum-Seymour-06)
- H a vertex-minor of $G \Longrightarrow \operatorname{rw}(H) \leq \operatorname{rw}(G)$.
- Comparability grids have $\mathrm{rw}=\Theta(t)$.

A class of graphs has unbounded

- tree-width iff it has all planar graphs as minors. - rank-width iff it has all circle graphs as vertex-minors.

A class of graphs has unbounded

- tree-width iff it has all planar graphs as minors.
- rank-width iff it has all circle graphs as vertex-minors.

Cut-rank (X) is the rank (over the binary field) of the matrix $\operatorname{adj}[X, V(G) \backslash X]$.

$$
\quad X(G) \backslash X\left[\right]
$$

Cut-rank (X) is the rank (over the binary field) of the matrix $\operatorname{adj}[X, V(G) \backslash X]$.

$$
\begin{gathered}
x \\
\\
X(G) \backslash X\left[\begin{array}{ccc|ccc}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Cut-rank (X) is the rank (over the binary field) of the matrix $\operatorname{adj}[X, V(G) \backslash X]$.

Cut-rank (X) is the rank (over the binary field) of the matrix $\operatorname{adj}[X, V(G) \backslash X]$.

$$
\begin{gathered}
X \\
X(G) \backslash X\left[\begin{array}{ccc||cc|}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 & & 0 \\
0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 \\
1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

$\operatorname{cut-rank}(X)=\operatorname{cut-rank}(V(G) \backslash X)$

Cut-rank (X) is the rank (over the binary field) of the matrix $\operatorname{adj}[X, V(G) \backslash X]$.
Rank-width (G) is the minimum width of a subcubic tree T with leafs $V(G)$.

Cut-rank (X) is the rank (over the binary field) of the matrix $\operatorname{adj}[X, V(G) \backslash X]$.
Rank-width (G) is the minimum width of a subcubic tree T with leafs $V(G)$.

$\operatorname{width}(T)=\max _{e \in E(T)} \operatorname{cut}-\operatorname{rank}\left(X_{e}\right)$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.
local equivalence classes of graphs.
The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.
local equivalence classes of graphs.
The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.
local equivalence classes of graphs.
The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

$G * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields local equivalence classes of graphs.

The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

$G * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields local equivalence classes of graphs.

The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

$G * v * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields local equivalence classes of graphs.

The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

$$
G * v * v=G
$$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields local equivalence classes of graphs.
The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields local equivalence classes of graphs.
The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

$G * V$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement. This yields local equivalence classes of graphs.
The vertex-minors of G are the induced subgraphs of graphs in the local equivalence class of G.

Rank-width only depends on cut-rank (X), which is invariant under local complementation.

$$
X(G) \backslash X\left[\right]
$$

Rank-width only depends on cut-rank (X), which is invariant under local complementation.

$$
X(G) \backslash X\left[\right]
$$

Rank-width only depends on cut-rank (X), which is invariant under local complementation.

$$
V(G)\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Rank-width only depends on cut-rank (X), which is invariant under local complementation.

$$
V(G)\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

$G * v$

The following are equivalent for any graph class.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

The following are equivalent for any graph class.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

The following are equivalent for any graph class.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors. - It has all circle graphs as vertex-minors.

The following are equivalent for any graph class.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.

The following are equivalent for any graph class.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

graph is a vertex-minor of a comparability grid.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

graph is a vertex-minor of a comparability grid.

chord diagram

circle graph $G * v$

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.

graph is a vertex-minor of a comparability grid.

chord diagram

circle graph $G * v * u$

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation.
graph is a vertex-minor of a comparability grid.

chord diagram

circle graph $G * v * u-v$

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

comparability grid

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

comparability grid

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local
complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

View a chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation, and vertex-deletion works nicely.

chord diagram

tour graph

Lemma

If H is a minor of G and $e \notin E(H)$, then H is a minor of either $G-e$ or G / e.

Theorem (Bouchet-88)
If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is a vertex-minor of either

Lemma

If H is a minor of G and $e \notin E(H)$, then H is a minor of either $G-e$ or G / e.

Theorem (Bouchet-88)
If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is a vertex-minor of either

Lemma

If H is a minor of G and $e \notin E(H)$, then H is a minor of either $G-e$ or G / e.

Theorem (Bouchet-88)
If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is a vertex-minor of either

- $G-v$,

Lemma

If H is a minor of G and $e \notin E(H)$, then H is a minor of either $G-e$ or G / e.

Theorem (Bouchet-88)
If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is a vertex-minor of either

- $G-v$,
- $G * v-v$, or

Lemma

If H is a minor of G and $e \notin E(H)$, then H is a minor of either $G-e$ or G / e.

Theorem (Bouchet-88)
If H is a vertex-minor of G and $v \in V(G) \backslash V(H)$, then H is a vertex-minor of either

- $G-v$,
- $G * v-v$, or
- $G * v * u * v-v$ for each neighbour u of v.

$$
\begin{array}{ll}
\text { branch-width } & \sim \\
\text { minor } & \sim \text { vertex-minor } \\
\text { grid } & \sim \text { comparability grid } \\
\text { planar graphs } & \sim \text { circle graphs }
\end{array}
$$

$$
\begin{array}{ccc}
\text { branch-width } & \sim & \text { rank-width } \\
\text { minor } & \sim & \text { vertex-minor } \\
\text { grid } & \sim & \text { comparability grid } \\
\text { planar graphs } & \sim & \text { circle graphs }
\end{array}
$$

branch-width minor grid \sim comparability grid
 rank-width
 vertex-minor

Pause:)

Kuratowski's Theorem
A graph is planar iff and only if it has no K_{5} or $K_{3,3}$ minor.

Theorem (Bouchet-94)
A graph is a circle graph iff it has none of the following as a vertex-minor.

Kuratowski's Theorem

A graph is planar iff and only if it has no K_{5} or $K_{3,3}$ minor.

Theorem (Bouchet-94)

A graph is a circle graph iff it has none of the following as a vertex-minor.

Menger's Theorem
For any $S, T \subseteq V(G)$ and edge e, either $G-e$ or G / e has no smaller (S, T)-separator than G.

Theorem (Oum-05)
For any disjoint $S, T \subset V(G)$ and vertex $v \notin S \cup T$, at least two of the three graphs $G-v, G * v-v, G * v * u * v-v$ have no smaller cut-rank (S, T)-cut than G.

Menger's Theorem
For any $S, T \subseteq V(G)$ and edge e, either $G-e$ or G / e has no smaller (S, T)-separator than G.

Theorem (Oum-05)
For any disjoint $S, T \subseteq V(G)$ and vertex $v \notin S \cup T$, For any disint S,T $T \in V(G)$ and vertex $v \notin S U T$, at least have no smaller cut-rank (S, T)-cut than G.

Menger's Theorem

For any $S, T \subseteq V(G)$ and edge e, either $G-e$ or G / e has no smaller (S, T)-separator than G.

Theorem (Oum-05)
For any disjoint $S, T \subseteq V(G)$ and vertex $v \notin S \cup T$, at least two of the three graphs $G-v, G * v-v, G * v * u * v-v$ have no smaller cut-rank (S, T)-cut than G.

Menger's Theorem
For any $S, T \subseteq V(G)$ and edge e, either $G-e$ or G / e has no smaller (S, T)-separator than G.

Theorem (Oum-05)
For any disjoint $S, T \subseteq V(G)$ and vertex $v \notin S \cup T$, at least two of the three graphs $G-v, G * v-v, G * v * u * v-v$ have no smaller cut-rank (S, T)-cut than G.
branch-width minor grid
planar graphs
Kuratowski's Theorem
Menger's Theorem

rank-width

vertex-minor comparability grid circle graphs

branch-width

 minor gridplanar graphs
Kuratowski's Theorem

rank-width

vertex-minor
comparability grid circle graphs
Bouchet's Theorem

Menger's Theorem
branch-width minor grid
planar graphs
Kuratowski's Theorem
Menger's Theorem

rank-width

 vertex-minor comparability grid circle graphsBouchet's Theorem
Oum's Theorem

branch-width ~ rank-width minor \sim vertex-minor grid $\quad \sim$ comparability grid circle graphs
 Kuratowski's Theorem ~Bouchet's Theorem
 Menger's Theorem
 Oum's Theorem

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T .
yields one set of
non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

Consider a planar graph with a spanning tree T. Draw a curve closely around T .
yields one set of
non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$.

planar graph

chord diagram

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$.

planar graph

fundamental graph $\mathcal{F}(T)$

Consider a planar graph with a spanning tree T. Draw a curve closely around \mathbf{T}. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$.

planar graph

fundamental graph $\mathcal{F}(T)$

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph $\mathcal{F}(T)$

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph $\mathcal{F}(T)$

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph $\mathcal{F}(T)$

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph $\mathcal{F}(T)$

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph ...

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph ...

Consider a planar graph with a spanning tree T. Draw a curve closely around T. So $E(G) \backslash E(T)$ yields one set of non-crossing chords and $E(T)$ yields another. The circle graph is the fundamental graph $\mathcal{F}(T)$. What is $\mathcal{F}\left(T^{\prime}\right)$?

planar graph

fundamental graph $\mathcal{F}\left(\mathrm{T}^{\prime}\right)$

How do we switch out u and v ?

1) Exchange their labels.
2) Complement between $N(u)-\{v\}$ and $N(v)-\{u\}$.

This graph is $G * u * v * u=G * v * u * v$.

How do we switch out u and v ?

1) Exchange their labels.
2) Complement between $N(u)-\{v\}$ and $N(v)-\{u\}$.

This graph is $G * u * v * u=G * v * u * v$.

How do we switch out u and v ?

1) Exchange their labels.
2) Complement between $N(u)-\{v\}$ and $N(v)-\{u\}$.

This graph is $G * u * v * u=G * v * u * v$.

How do we switch out u and v ?

1) Exchange their labels.
2) Complement between $N(u)-\{v\}$ and $N(v)-\{u\}$.

This graph is $G * u * v * u=G * v * u * v$.

How do we switch out u and v ?

1) Exchange their labels.
2) Complement between $N(u)-\{v\}$ and $N(v)-\{u\}$.

This graph is $G * u * v * u=G * v * u * v$.

Pivoting an edge $u v$ of G yields the graph

$$
G \times u v:=G * u * v * u=G * v * u * v .
$$

We can define pivot equivalence and pivot-minors as well.

G

$G \times u v$

Pivoting an edge $u v$ of G yields the graph

$$
G \times u v:=G * u * v * u=G * v * u * v .
$$

We can define pivot equivalence and pivot-minors as well.

G

$G \times u v$

planar graphs

pivot-equivalent bipartite circle graphs

via fundamental graphs

planar graphs

 \leftrightarrow

 \leftrightarrow
 pivot-equivalent bipartite circle graphs

via fundamental graphs

Theorem (Bouchet)

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

planar graph

fundamental graph $\mathcal{F}(T)$

Theorem (Bouchet)

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

planar graph

fundamental graph $\mathcal{F}(T)$

Theorem (Bouchet)

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

planar graph

fundamental graph $\mathcal{F}\left(\mathrm{T}^{*}\right)$

Theorem (Bouchet)

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

planar graph

fundamental graph $\mathcal{F}\left(\mathrm{T}^{*}\right)$

Theorem (Bouchet)
The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)
Every bipartite circle graph is the fundamental graph of a planar graph, \qquad
vertex connectivity

Theorem (Bouchet)

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)
Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

Theorem (Bouchet)

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)
Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.
vertex connectivity \longrightarrow cut-rank

Theorem (Bouchet)

The fundamental graphs of two distinct, connected binary matroids are pivot equivalent iff the matroids are dual.

Theorem (de Fraysseix-81)
Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.
vertex connectivity \longrightarrow cut-rank minors \longrightarrow pivot-minors

minors \longrightarrow pivot-minors

We can delete edges in $E(G) \backslash E(T)$ and contract edges in T

planar graph

fundamental graph $\mathcal{F}(\mathrm{T})$

minors \longrightarrow pivot-minors

We can delete edges in $E(G) \backslash E(T)$ and contract edges in T

planar graph

fundamental graph $\mathcal{F}(\mathrm{T})$

minors \longrightarrow pivot-minors

We can delete edges in $E(G) \backslash E(T)$ and contract edges in T

planar graph

fundamental graph

$$
\mathcal{F}(T)-v
$$

minors \longrightarrow pivot-minors

We can delete edges in $E(G) \backslash E(T)$ and contract edges in T.

planar graph

fundamental graph

$$
\mathcal{F}(T)-v
$$

minors \longrightarrow pivot-minors

We can delete edges in $E(G) \backslash E(T)$ and contract edges in T.

planar graph

fundamental graph

$$
\mathcal{F}(T)-v
$$

minors \longrightarrow pivot-minors

We can delete edges in $E(G) \backslash E(T)$ and contract edges in T.

planar graph

fundamental graph

$$
\mathcal{F}(T)-v-u
$$

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

Minors and vertex-minors are incomparable, but pivot-minors provide a common generalization.

Minors and vertex-minors are incomparable, but pivot-minors provide a common generalization.

branch-width	\sim	rank-width
minor	\sim	pivot-minor

grid	\sim comparability grid
planar graphs	\sim bip. circle graphs

Kuratowski's Theorem ~ Bouchet's Theorem
Menger's Theorem ~ Oum's Theorem

Minors and vertex-minors are incomparable, but pivot-minors provide a common generalization.

branch-width	\sim	rank-width
minor	\sim	pivot-minor

grid	\sim comparability grid
planar graphs	\sim bip. circle graphs

Kuratowski's Theorem ~Bouchet's Theorem
Menger's Theorem ~ Oum's Theorem

Minors and vertex-minors are incomparable, but pivot-minors provide a common generalization.

Pause

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor.

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

K_{4}

large wheel

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H
$G[V(H)]$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

G

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

$G * v$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H
$G * v-v$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

G

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

G

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

G

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

$G \times u v$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

$G \times u v-v$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

G

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

$G * v$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

$G * v-v$

Pivot-minors seem truly harder...

Yet, if G has an H vertex-minor and $|V(G)| \geq 2^{|V(H)|}$, then there exists $v \in V(G) \backslash V(H)$ s.t. H is a vertex-minor of at least two of: $G-v, G * v-v, G \times u v-v$.

H

$$
(G * v-v) * u
$$

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where - $\operatorname{depth}\left(K_{1}\right)=0$.

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where - $\operatorname{depth}\left(K_{1}\right)=0$,

- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right), \operatorname{depth}\left(G_{2}\right)\right)$, and - for any $S \subseteq V(G)$,

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right), \operatorname{depth}\left(G_{2}\right)\right)$, and

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1.

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1 .

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1 .

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1 .

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1 .

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1 .

Theorem (Kwon-McCarty-Oum-Wollan-21)
A class of graphs has unbounded shrub-depth iff it has all paths as vertex-minors.

Pivot-minors seem truly harder...

A class of graphs has bounded shrub-depth if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}\left(K_{1}\right)=0$,
- $\operatorname{depth}\left(G_{1} \uplus G_{2}\right)=\max \left(\operatorname{depth}\left(G_{1}\right)\right.$, $\left.\operatorname{depth}\left(G_{2}\right)\right)$, and
- for any $S \subseteq V(G)$, replacing $G[S]$ by its complement increases depth by 1 .

Theorem (Kwon-McCarty-Oum-Wollan-21)
A class of bipartite graphs has unbounded shrub-depth iff it has all paths as pivot-minors.

Yet there are classes of unbounded shrub-depth without all paths as pivot-minors.

$$
H_{n}
$$

Conjecture
A class of graphs has unbounded shrub-depth iff it has all paths or all H_{n} as pivot-minors.

```
Is it true when rank-width is bounded?!?
See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.
```

Conjecture (Oum-09)
A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture
Every proper vertex-minor-closed class can be characterized by a finite list of forbidden vertex-minors.

Conjecture

A class of graphs has unbounded shrub-depth iff it has all paths or all H_{n} as pivot-minors.

Is it true when rank-width is bounded?!?
See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.
Conjecture (Oum-09)
A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture
Every proper vertex-minor-closed class can be characterized
by a finite list of forbidden vertex-minors.

Conjecture

A class of graphs has unbounded shrub-depth iff it has all paths or all H_{n} as pivot-minors.

Is it true when rank-width is bounded?!?
See Nešetril-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture by a finite list of forbidden vertex-minors.

Conjecture

A class of graphs has unbounded shrub-depth iff it has all paths or all H_{n} as pivot-minors.

Is it true when rank-width is bounded?!?
See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all bipartite circle graphs as pivot-minors.

Conjecture

Every proper vertex-minor-closed class can be characterized by a finite list of forbidden vertex-minors.

Thank you!

