Rank-width, circle graphs, and vertex-minors

Rose McCarty

Department of Combinatorics and Optimization

Width Parameters March 2021 Theorem (Robertson-Seymour-86)

Every graph of tree-width $\geq f(t)$ has a t \times t grid as a minor.

as a minor

No

as a vertex-minor

No \Rightarrow

as a vertex-minor

- $\operatorname{rw}(G) \leq \operatorname{clique-width}(G) \leq 2^{\operatorname{rw}(G)+1}$ (Oum-Seymour-06)
- *H* a vertex-minor of $G \implies \operatorname{rw}(H) \le \operatorname{rw}(G)$.
- Comparability grids have $rw = \Theta(t)$.

- $\operatorname{rw}(G) \leq \operatorname{clique-width}(G) \leq 2^{\operatorname{rw}(G)+1}$ (Oum-Seymour-06)
- *H* a vertex-minor of $G \implies \operatorname{rw}(H) \le \operatorname{rw}(G)$.
- Comparability grids have $rw = \Theta(t)$.

- $\operatorname{rw}(G) \leq \operatorname{clique-width}(G) \leq 2^{\operatorname{rw}(G)+1}$ (Oum-Seymour-06)
- *H* a vertex-minor of $G \implies \operatorname{rw}(H) \le \operatorname{rw}(G)$.
- Comparability grids have $rw = \Theta(t)$.

A class of graphs has unbounded

- tree-width iff it has all planar graphs as minors.
- rank-width iff it has all **circle graphs** as vertex-minors.

A class of graphs has unbounded

- tree-width iff it has all planar graphs as minors.
- rank-width iff it has all **circle graphs** as vertex-minors.

 $\operatorname{cut-rank}(X) = \operatorname{cut-rank}(V(G) \setminus X)$

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

width(T) = $\max_{e \in E(T)}$ cut-rank(X_e)

Rank-width(G) is the minimum width of a subcubic tree T with leafs V(G).

Rank-width only depends on $\operatorname{cut-rank}(X)$, which is invariant under local complementation.

$$X \qquad V(G) \setminus X$$

$$X \begin{bmatrix} 0 & 1 & 0 & | & 1 & 1 & 0 \\ 1 & 0 & 1 & | & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & | & 1 & 0 & 0 \end{bmatrix}$$

Rank-width only depends on cut-rank(X), which is invariant under local complementation.

$$X = V(G) \setminus X$$

$$X \begin{bmatrix} 0 & 1 & 0 & | & 1 & 1 & 0 \\ 1 & 0 & 1 & | & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & | & 1 & 0 & 0 \end{bmatrix}$$

Rank-width only depends on cut-rank(X), which is invariant under local complementation.

Rank-width only depends on cut-rank(X), which is invariant under local complementation.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

- It has unbounded clique-width.
- It has unbounded rank-width.
- It has all comparability grids as vertex-minors.
- It has all circle graphs as vertex-minors.

A circle graph is the intersection graph of chords on a circle.

They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

chord diagram

circle graph G * v
A circle graph is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

circle graph G * v * u

chord diagram

A **circle graph** is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

circle graph G * v * u - v

chord diagram

A **circle graph** is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

A **circle graph** is the intersection graph of chords on a circle. They are closed under local complementation. Every circle graph is a vertex-minor of a comparability grid.

u v

chord diagram

u v

chord diagram

u v

chord diagram

chord diagram

u V

chord diagram

chord diagram

V

chord diagram

chord diagram

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a **vertex-minor** of either

•
$$G - V$$
,

•
$$G * v - v$$
, or

G ∗ v ∗ u ∗ v − v for each neighbour u of v.

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either

•
$$G - v$$
,

•
$$G * v - v$$
, or

G * v * u * v - v for each neighbour u of v.

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either

•
$$G * v - v$$
, or

G * v * u * v - v for each neighbour u of v.

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either

•
$$G * v - v$$
, or

G ∗ v ∗ u ∗ v − v for each neighbour u of v.

If H is a minor of G and $e \notin E(H)$, then H is a minor of either G - e or G/e.

Theorem (Bouchet-88)

If H is a vertex-minor of G and $v \in V(G) \setminus V(H)$, then H is a vertex-minor of either

•
$$G * v - v$$
, or

• G * v * u * v - v for each neighbour u of v.

branch-width \sim rank-width

minor \sim vertex-minor

- grid \sim
- planar graphs \sim
- comparability grid circle graphs

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs

- $egin{array}{ccc} {
 m branch-width} & \sim {
 m rank-width} \ {
 m minor} & \sim {
 m vertex-minor} \ {
 m grid} & \sim {
 m comparability grid} \end{array}$
- planar graphs $~\sim~$
- \sim circle graphs

Pause :)

Kuratowski's Theorem

A graph is planar iff and only if it has no K_5 or $K_{3,3}$ minor.

Theorem (Bouchet-94)

A graph is a **circle graph** iff it has none of the following as a **vertex-minor**.

Kuratowski's Theorem

A graph is planar iff and only if it has no K_5 or $K_{3,3}$ minor.

Theorem (Bouchet-94)

A graph is a **circle graph** iff it has none of the following as a **vertex-minor**.

For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)

For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)

For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)

For any $S, T \subseteq V(G)$ and edge e, either G - e or G/e has no smaller (S, T)-separator than G.

Theorem (Oum-05)

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\rightsquigarrow	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

Consider a planar graph with a spanning tree **T**. Draw a curve closely around **T**. So $E(G) \setminus E(\mathbf{T})$ yields one set of non-crossing chords and $E(\mathbf{T})$ yields another. The circle graph is the **fundamental graph** $\mathcal{F}(\mathbf{T})$. What is $\mathcal{F}(\mathbf{T}')$?

planar graph

Consider a planar graph with a spanning tree **T**. Draw a curve closely around **T**. So $E(G) \setminus E(\mathbf{T})$ yields one set of non-crossing chords and $E(\mathbf{T})$ yields another. The circle graph is the **fundamental graph** $\mathcal{F}(\mathbf{T})$. What is $\mathcal{F}(\mathbf{T}')$?

planar graph

Consider a planar graph with a spanning tree **T**. Draw a curve closely around **T**. So $E(G) \setminus E(\mathbf{T})$ yields one set of non-crossing chords and $E(\mathbf{T})$ yields another. The circle graph is the **fundamental graph** $\mathcal{F}(\mathbf{T})$. What is $\mathcal{F}(\mathbf{T}')$?

planar graph

chord diagram

chord diagram

chord diagram

\bigcirc

chord diagram

\bigcirc

planar graph

chord diagram

planar graph

chord diagram

planar graph

fundamental graph $\mathcal{F}(\mathsf{T})$

planar graph

fundamental graph ...

planar graph

fundamental graph ...

fundamental graph $\mathcal{F}(\mathsf{T}')$

1) Exchange their labels.

2) Complement between $N(u) - \{v\}$ and $N(v) - \{u\}$.

1) Exchange their labels.

2) Complement between $N(u) - \{v\}$ and $N(v) - \{u\}$.

- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.

- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.

- 1) Exchange their labels.
- 2) Complement between $N(u) \{v\}$ and $N(v) \{u\}$.

Pivoting an edge *uv* of *G* yields the graph

$$G \times uv \coloneqq G * u * v * u = G * v * u * v.$$

We can define **pivot equivalence** and **pivot-minors** as well.

Pivoting an edge *uv* of *G* yields the graph

$$G \times uv \coloneqq G * u * v * u = G * v * u * v.$$

We can define **pivot equivalence** and **pivot-minors** as well.

planar graphs \rightsquigarrow pivot-equivalent bipartite circle graphs

via fundamental graphs

planar graphs \longleftrightarrow pivot-equivalent

bipartite circle graphs

via fundamental graphs

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

fundamental graph $\mathcal{F}(\mathsf{T})$

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

fundamental graph $\mathcal{F}(\mathsf{T})$

The fundamental graphs of two distinct, 2-connected planar graphs are pivot equivalent iff the planar graphs are dual.

fundamental graph $\mathcal{F}(\mathsf{T}^*)$

The fundamental graphs of two distinct, connected **binary matroids** are pivot equivalent iff the matroids are **dual**.

fundamental graph $\mathcal{F}(\mathsf{T}^*)$

The fundamental graphs of two distinct, connected **binary matroids** are pivot equivalent iff the matroids are **dual**.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity \longrightarrow cut-rank

minors —> pivot-minors

The fundamental graphs of two distinct, connected **binary matroids** are pivot equivalent iff the matroids are **dual**.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity \longrightarrow **cut-rank**

minors —> pivot-minors

The fundamental graphs of two distinct, connected **binary matroids** are pivot equivalent iff the matroids are **dual**.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity $\longrightarrow cut$ -rank

minors —> pivot-minors

The fundamental graphs of two distinct, connected **binary matroids** are pivot equivalent iff the matroids are **dual**.

Theorem (de Fraysseix-81)

Every bipartite circle graph is the fundamental graph of a planar graph, and every circle graph is a vertex-minor of one that is bipartite.

vertex connectivity \longrightarrow **cut-rank**

minors \rightarrow **pivot-minors**

We can delete edges in $E(G) \setminus E(T)$ and contract edges in **T**.

planar graph

 $\begin{array}{c} \text{fundamental graph} \\ \mathcal{F}(\mathbf{T}) \end{array}$

We can delete edges in $E(G) \setminus E(\mathbf{T})$ and contract edges in \mathbf{T} .

planar graph

 $\begin{array}{c} \text{fundamental graph} \\ \mathcal{F}(\mathbf{T}) \end{array}$

We can delete edges in $E(G) \setminus E(\mathbf{T})$ and contract edges in \mathbf{T} .

planar graph

fundamental graph $\mathcal{F}(\mathbf{T}) - \mathbf{v}$

We can delete edges in $E(G) \setminus E(T)$ and contract edges in **T**.

planar graph

fundamental graph $\mathcal{F}(\mathbf{T}) - v$
minors — **pivot-minors**

We can delete edges in $E(G) \setminus E(T)$ and contract edges in **T**.

planar graph

fundamental graph $\mathcal{F}(\mathbf{T}) - v$

minors — **pivot-minors**

We can delete edges in $E(G) \setminus E(T)$ and contract edges in **T**.

planar graph

fundamental graph $\mathcal{F}(\mathbf{T}) - \mathbf{v} - \mathbf{u}$

branch-width	\sim	rank-width
minor	\sim	vertex-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	pivot-minor
grid	\sim	comparability grid
planar graphs	\sim	circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	pivot-minor
grid	\sim	comparability grid
planar graphs	\sim	bip. circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

branch-width	\sim	rank-width
minor	\sim	pivot-minor
grid	\sim	comparability grid
planar graphs	\sim	bip. circle graphs
Kuratowski's Theorem	\sim	Bouchet's Theorem
Menger's Theorem	\sim	Oum's Theorem

Pause

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

There are large graphs with a "uniquely obtainable" minor. Each edge can only be deleted in one way maintaining minor.

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

• $\operatorname{depth}(K_1) = 0$,

- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement, increases depth by 1.

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.
- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of graphs has **unbounded shrub-depth** iff it has all **paths** as vertex-minors.

A class of graphs has **bounded shrub-depth** if every graph in it can be constructed by a bounded depth sequence, where

- $\operatorname{depth}(K_1) = 0$,
- $\operatorname{depth}(G_1 \uplus G_2) = \max(\operatorname{depth}(G_1), \operatorname{depth}(G_2))$, and
- for any S ⊆ V(G), replacing G[S] by its complement increases depth by 1.

Theorem (Kwon-McCarty-Oum-Wollan-21)

A class of **bipartite** graphs has unbounded shrub-depth iff it has all paths as **pivot-minors**.

Yet there are classes of unbounded shrub-depth **without** all paths as pivot-minors.

 H_n

A class of graphs has unbounded shrub-depth iff it has all **paths** or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all **bipartite circle graphs** as pivot-minors.

Conjecture

Every proper **vertex-minor-closed** *class can be characterized by a* **finite** *list of forbidden vertex-minors.*

A class of graphs has unbounded shrub-depth iff it has all **paths** or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all **bipartite circle graphs** as pivot-minors.

Conjecture

Every proper **vertex-minor-closed** *class can be characterized by a* **finite** *list of forbidden vertex-minors.*

A class of graphs has unbounded shrub-depth iff it has all **paths** or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all **bipartite circle graphs** as pivot-minors.

Conjecture

Every proper **vertex-minor-closed** *class can be characterized by a* **finite** *list of forbidden vertex-minors.*

A class of graphs has unbounded shrub-depth iff it has all **paths** or all H_n as pivot-minors.

Is it true when rank-width is bounded?!? See Nešetřil-Ossona de Mendez-Pilipczuk-Rabinovich-Siebertz.

Conjecture (Oum-09)

A class of graphs has unbounded rank-width iff it has all **bipartite circle graphs** as pivot-minors.

Conjecture

Every proper **vertex-minor-closed** class can be characterized by a **finite** list of forbidden vertex-minors.

Thank you!