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Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Have pure pairs of size εH · n [Chudnovsky-Oum 18]

Have chromatic number ≤ fH(clique number) [Davies 21]

Want a structure that guarantees some H ′ is not a
vertex-minor.



Difficulty: Our graph class can have
arbitrarily large cliques.



Difficulty: Our graph class can have
arbitrarily large cliques.



Difficulty: Our graph class can have
arbitrarily large cliques.



Difficulty: Our graph class can have
arbitrarily large cliques.



Difficulty: Our graph class can have
arbitrarily large cliques.

Approach: Kotzig and Bouchet found a
connection with flooding immersions.
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Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph. The remaining vertex gives a signature on the
tour graph.



Theorem (Bouchet 94)

A graph is a circle graph

⇐⇒
it has none of

as a vertex-minor.
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What if no more vertices can be added
to the circle graph?

Then the tour graph is Zk
2-labelled.
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Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by
a 1-vertex graph with t non-zero loops at a?

Have precise min-max theorem for Zk
2-labelled graphs.
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Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number ≤ polynomialH(clique number).

See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:
Their clique number can be computed in polynomial-time.

See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Conjecture: Graphs are well-quasi-ordered by vertex-minors.

See (Oum 08).



Thank you!


