
Vertex-minors and
flooding immersions

Rose McCarty

Joint work with Jim Geelen and Paul Wollan (ongoing!)

IBS Virtual Discrete Math Colloquium
January 2021

G

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v ∗ u

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v ∗ u

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v ∗ u ∗ u

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v ∗ u ∗ u ∗ v =

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

G ∗ v − v

Locally complementing at v replaces the induced subgraph
on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained
from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

x y z a 1 1 1
b 1 1 1
c 1 1 1

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

x y z a 1 1 1
b 1 1 1
c 1 1 1

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

x y z a 1 1 1
b 1 1 1
c 1 1 1

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

x y z a 1 1 1
b 0 0 0
c 0 0 0

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Have pure pairs of size εH · n [Chudnovsky-Oum 18]

Have chromatic number ≤ fH(clique number) [Davies 21]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Have pure pairs of size εH · n [Chudnovsky-Oum 18]

Have chromatic number ≤ fH(clique number) [Davies 21]

Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Have pure pairs of size εH · n [Chudnovsky-Oum 18]

Have chromatic number ≤ fH(clique number) [Davies 21]

Want a structure that guarantees some H ′ is not a
vertex-minor.

Difficulty: Our graph class can have
arbitrarily large cliques.

Difficulty: Our graph class can have
arbitrarily large cliques.

Difficulty: Our graph class can have
arbitrarily large cliques.

Difficulty: Our graph class can have
arbitrarily large cliques.

Difficulty: Our graph class can have
arbitrarily large cliques.

Approach: Kotzig and Bouchet found a
connection with flooding immersions.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

An immersion of H into G consists of

an injection ψ : V (H)→ V (G) and
for each e = uv ∈ E (H), a (ψ(u), ψ(v))-trail in G , s.t. the
trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say
H floods G . If H and G are Eulerian, every immersion can be
made flooding.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges,
called the signature. Equivalently, each edge e has a weight
w(e) ∈ Z2.

We only care about the weight of each cycle, where
w(C) :=

∑
e∈E(C) w(e) over Z2. So re-signing (adding 1 to

each edge in a cut) gives an equivalent signed graph.

For immersions of signed graphs, after re-signing,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

For immersions of signed graphs, after re-signing H ,

each e ∈ E (H) is sent to a trail of weight w(e) in G .

Now flooding immersions behave much differently.

Graphs with k different signatures are called Zk
2-labelled; each

edge has a weight w(e) ∈ Zk
2 . We can re-sign on any γ ∈ Zk

2 .

So we are interested in flooding immersions of
Zk

2-labelled Eulerian graphs...

...in order to describe the structure of graphs
without H as a vertex-minor.

The connection is through circle graphs.

So we are interested in flooding immersions of
Zk

2-labelled Eulerian graphs...

...in order to describe the structure of graphs
without H as a vertex-minor.

The connection is through circle graphs.

So we are interested in flooding immersions of
Zk

2-labelled Eulerian graphs...

...in order to describe the structure of graphs
without H as a vertex-minor.

The connection is through circle graphs.

chord diagram circle graph G

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram circle graph G

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram circle graph G ∗ u

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram circle graph G ∗ u ∗ v

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram circle graph G ∗ u ∗ v

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

chord diagram tour graph

A circle graph is the intersection graph of chords on a circle.
Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract
the chords to get the tour graph. It is invariant under local
complementation. Here is how we delete v .

circle graph chord diagram tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

their tour graphs T (H) and T (G) are unique and

H is a vertex-minor of G ⇐⇒ T (H) floods T (G).

circle graph chord diagram tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

their tour graphs T (H) and T (G) are unique and

H is a vertex-minor of G ⇐⇒ T (H) floods T (G).

circle graph chord diagram tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

their tour graphs T (H) and T (G) are unique and

H is a vertex-minor of G ⇐⇒ T (H) floods T (G).

circle graph chord diagram tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

their tour graphs T (H) and T (G) are unique and

H is a vertex-minor of G ⇐⇒ T (H) floods T (G).

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G .

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph.

Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph. The remaining vertex gives a signature on the
tour graph.

Theorem (Bouchet 94)

A graph is a circle graph

⇐⇒
it has none of

as a vertex-minor.

circle graph chord diagram tour graph

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x .

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x .

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK. Deleting u is OK.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK. Deleting u is OK.

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK. Deleting u is OK.

Can add x as a chord ⇐⇒ can re-sign s.t. |Σ| ≤ 2.

circle graph chord diagram tour graph

Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK. Deleting u is OK.

Can add x as a chord ⇐⇒ can re-sign s.t. |Σ| ≤ 2.

What if no more vertices can be added
to the circle graph?

What if no more vertices can be added
to the circle graph?

Then the tour graph is Zk
2-labelled.

Here is an example of a “win”...

A toroidal grid with signatures Σ1, Σ2, Σ3

of size 4, “far apart”.

Here is an example of a “win”...

A toroidal grid with signatures Σ1, Σ2, Σ3

of size 4, “far apart”.

Here is an example of a “win”...

A toroidal grid with signatures Σ1, Σ2, Σ3

of size 4, “far apart”.

Here is an example of a “win”...

A toroidal grid with signatures Σ1, Σ2, Σ3

of size 4, “far apart”.

Here is an example of a “win”...

A toroidal grid with signatures Σ1, Σ2, Σ3

of size 4, “far apart”.

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

Need a “non-zero A-paths” type result...

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by
a 1-vertex graph with t non-zero loops at a?

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by
a 1-vertex graph with t non-zero loops at a?

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by
a 1-vertex graph with t non-zero loops at a?

Have precise min-max theorem for Zk
2-labelled graphs.

Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G) with max t < d , then there exist
S ⊆ V (G) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G)) 6= dγ.

Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G) with max t < d , then there exist
S ⊆ V (G) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G)) 6= dγ.

Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G) with max t < d , then there exist
S ⊆ V (G) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G)) 6= dγ.

Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G) with max t < d , then there exist
S ⊆ V (G) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G)) 6= dγ.

Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G) with max t < d , then there exist
S ⊆ V (G) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G)) 6= dγ.

Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G) with max t < d , then there exist
S ⊆ V (G) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G)) 6= dγ.

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number ≤ polynomialH(clique number).

See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number ≤ polynomialH(clique number).

See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:
Their clique number can be computed in polynomial-time.

See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number ≤ polynomialH(clique number).

See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:
Their clique number can be computed in polynomial-time.

See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Conjecture: Graphs are well-quasi-ordered by vertex-minors.

See (Oum 08).

Thank you!

