Vertex-minors and flooding immersions

Rose McCarty

Joint work with Jim Geelen and Paul Wollan (ongoing!)

IBS Virtual Discrete Math Colloquium January 2021

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

(1 * V)

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

G * v * u

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

G * v * u

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

G * v * u * u

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

G * v * u * u * v =

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

Two graphs are **locally equivalent** if one can be obtained from the other by local complementations.

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$\begin{array}{cccc} x & y & z \\ a \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ c & 1 & 1 & 1 \end{bmatrix}$$

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$\begin{array}{cccc} x & y & z \\ a \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ c & 1 & 1 & 1 \end{bmatrix}$$

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$\begin{array}{cccc} x & y & z \\ a & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ c & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \end{array}$$

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$\begin{array}{cccc} x & y & z \\ a & 1 & 1 & 1 \\ b & 0 & 0 & 0 \\ c & 0 & 0 & 0 \end{array}$$

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

FIG. 1. Quantum computation by measuring two-state parti-

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

 $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no **vertex-minor** isomorphic to *H*?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no **vertex-minor** isomorphic to *H*?

- Have pure pairs of size $\epsilon_H \cdot n$ [Chudnovsky-Oum 18]
- Have chromatic number $\leq f_H(\text{clique number})$ [Davies 21]

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no **vertex-minor** isomorphic to *H*?

- Have pure pairs of size $\epsilon_H \cdot n$ [Chudnovsky-Oum 18]
- Have chromatic number $\leq f_H(\text{clique number})$ [Davies 21]

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]
- Can we describe the structure of graphs with no **vertex-minor** isomorphic to *H*?
 - Have pure pairs of size $\epsilon_H \cdot n$ [Chudnovsky-Oum 18]
 - Have chromatic number $\leq f_H$ (clique number) [Davies 21]

Want a structure that guarantees some H' is not a vertex-minor.

Approach: Kotzig and Bouchet found a connection with **flooding immersions**.

• an injection $\psi: V(H) \rightarrow V(G)$ and

 for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each e = uv ∈ E(H), a (ψ(u), ψ(v))-trail in G, s.t. the trails are edge-disjoint.

Now **flooding immersions** behave much differently.

Now flooding immersions behave much differently.

For **immersions** of signed graphs, after re-signing H, • each $e \in E(H)$ is sent to a trail of weight w(e) in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_2^k -labelled; each edge has a weight $w(e) \in \mathbb{Z}_2^k$. We can re-sign on any $\gamma \in \mathbb{Z}_2^k$.

So we are interested in **flooding immersions** of \mathbb{Z}_2^k -labelled Eulerian graphs...

...in order to describe the structure of graphs without *H* as a **vertex-minor**.

The connection is through **circle graphs**.

So we are interested in **flooding immersions** of \mathbb{Z}_2^k -labelled Eulerian graphs...

...in order to describe the structure of graphs without H as a **vertex-minor**.

The connection is through **circle graphs**.

So we are interested in **flooding immersions** of \mathbb{Z}_2^k -labelled Eulerian graphs...

...in order to describe the structure of graphs without H as a **vertex-minor**.

The connection is through **circle graphs**.

chord diagram

circle graph G

A **circle graph** is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

chord diagram

circle graph G

chord diagram

circle graph G * u

chord diagram

circle graph G * u * v

A **circle graph** is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

chord diagram

circle graph G * u * v

chord diagram

chord diagram

chord diagram

chord diagram

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

• their tour graphs T(H) and T(G) are unique and

• *H* is a vertex-minor of $G \iff T(H)$ floods T(G).

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

- their tour graphs T(H) and T(G) are unique and
- *H* is a vertex-minor of $G \iff T(H)$ floods T(G).

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

- their tour graphs T(H) and T(G) are unique and
- *H* is a vertex-minor of $G \iff T(H)$ floods T(G).

Theorem (Kotzig 77 and Bouchet 94)

If H and G are prime circle graphs, then

- their tour graphs T(H) and T(G) are unique and
- *H* is a vertex-minor of $G \iff T(H)$ floods T(G).

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph. The remaining vertex gives a **signature** on the **tour graph**.

circle graph

chord diagram

tour graph

Adding x will give a signature Σ in the **tour graph**.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

circle graph + x chord diagram tour graph

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts".

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts". Re-signing at v is OK.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts". Re-signing at v is OK.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

Can add x as a chord \iff can re-sign s.t. $|\Sigma| \leq 2$.

Adding x will give a signature Σ in the **tour graph**. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \iff the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

Can add x as a chord \iff can re-sign s.t. $|\Sigma| \leq 2$.

What if no more vertices can be added to the circle graph?

What if no more vertices can be added to the circle graph?

Then the **tour graph** is \mathbb{Z}_2^k -labelled.

A toroidal grid with signatures Σ_1 , Σ_2 , Σ_3 of size 4, "far apart".

Suppose we have a grid subgraph

and we identify its vertices to a new vertex a.

Need a "non-zero A-paths" type result...

What is the maximum t s.t. G is **flooded** by a 1-vertex graph with t non-zero loops at a?

What is the maximum t s.t. G is **flooded** by a 1-vertex graph with t non-zero loops at a?

What is the maximum t s.t. G is **flooded** by a 1-vertex graph with t non-zero loops at a?

Have precise min-max theorem for \mathbb{Z}_2^k -labelled graphs.

If G is \mathbb{Z}_2^k -labelled, Eulerian, and 2d-edge-connected for an integer $d \ge 2$, and $a \in V(G)$ with max t < d, then there exist $S \subseteq V(G) \setminus \{a\}, \gamma \in \mathbb{Z}_2^k$, and a re-signing s.t.

• every non-zero edge is incident to a vertex in S and has weight γ , and

 $|\delta(S)| = 2d \text{ and } w(E(G)) \neq d\gamma.$

If G is \mathbb{Z}_2^k -labelled, Eulerian, and 2d-edge-connected for an integer $d \ge 2$, and $a \in V(G)$ with max t < d, then there exist $S \subseteq V(G) \setminus \{a\}, \ \gamma \in \mathbb{Z}_2^k$, and a re-signing s.t.

- every non-zero edge is incident to a vertex in S and has weight γ , and
- $|\delta(S)| = 2d \text{ and } w(E(G)) \neq d\gamma.$

If G is \mathbb{Z}_2^k -labelled, Eulerian, and 2d-edge-connected for an integer $d \ge 2$, and $a \in V(G)$ with max t < d, then there exist $S \subseteq V(G) \setminus \{a\}, \ \gamma \in \mathbb{Z}_2^k$, and a re-signing s.t.

• every non-zero edge is incident to a vertex in S and has weight γ , and

 $|\delta(S)| = 2d \text{ and } w(E(G)) \neq d\gamma.$

If G is \mathbb{Z}_2^k -labelled, Eulerian, and 2d-edge-connected for an integer $d \ge 2$, and $a \in V(G)$ with max t < d, then there exist $S \subseteq V(G) \setminus \{a\}, \ \gamma \in \mathbb{Z}_2^k$, and a re-signing s.t.

- every non-zero edge is incident to a vertex in S and has weight γ, and
- $|\delta(S)| = 2d \text{ and } w(E(G)) \neq d\gamma.$

If G is \mathbb{Z}_2^k -labelled, Eulerian, and 2d-edge-connected for an integer $d \ge 2$, and $a \in V(G)$ with max t < d, then there exist $S \subseteq V(G) \setminus \{a\}, \ \gamma \in \mathbb{Z}_2^k$, and a re-signing s.t.

- every non-zero edge is incident to a vertex in S and has weight γ , and
- $|\delta(S)| = 2d \text{ and } w(E(G)) \neq d\gamma.$

If G is \mathbb{Z}_2^k -labelled, Eulerian, and 2d-edge-connected for an integer $d \ge 2$, and $a \in V(G)$ with max t < d, then there exist $S \subseteq V(G) \setminus \{a\}, \gamma \in \mathbb{Z}_2^k$, and a re-signing s.t.

• every non-zero edge is incident to a vertex in S and has weight γ , and

$$|\delta(S)| = 2d \text{ and } w(E(G)) \neq d\gamma.$$

Conjecture (Kim-Kwon-Oum-Sivaraman 20): They have chromatic number \leq **polynomial**_{*H*}(clique number).

• See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture (Kim-Kwon-Oum-Sivaraman 20): They have chromatic number \leq **polynomial**_{*H*}(clique number).

• See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:

Their clique number can be computed in polynomial-time.

• See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Conjecture (Kim-Kwon-Oum-Sivaraman 20): They have chromatic number \leq **polynomial**_{*H*}(clique number).

• See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:

Their clique number can be computed in polynomial-time.

• See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Conjecture: Graphs are well-quasi-ordered by vertex-minors.

• See (Oum 08).

Thank you!