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Why local equivalence?

Cut-rank: “connectivity for dense graphs” [Bouchet; Oum 05]

Graph states: “resources in quantum computing”
[Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]

Delta-matroids: “matroid theory for symmetric matrices”
[Bouchet; Moffatt 19]

Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Have pure pairs of size εH · n [Chudnovsky-Oum 18]

Have chromatic number ≤ fH(clique number) [Davies 21]

Want a structure that guarantees some H ′ is not a
vertex-minor.
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Approach: Kotzig and Bouchet found a
connection with flooding immersions.
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Theorem (with O-joung Kwon)

A class of graphs has unbounded rank-width if and only if it
contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle
graph is an induced subgraph of G . Throw vertices into the
circle graph. The remaining vertex gives a signature on the
tour graph.



Theorem (Bouchet 94)

A graph is a circle graph

⇐⇒
it has none of

as a vertex-minor.
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Adding x will give a signature Σ in the tour graph. Consider
the neighbourhood of x . For each neighbour, choose an end of
its chord and add 1 to both “incident arcs”.

Then v is a neighbour ⇐⇒ the chord of v “splits the circle
into two odd parts”. Re-signing at v is OK. Deleting u is OK.

Can add x as a chord ⇐⇒ can re-sign s.t. |Σ| ≤ 2.
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What if no more vertices can be added
to the circle graph?

Then the tour graph is Zk
2-labelled.
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Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by
a 1-vertex graph with t non-zero loops at a?

Have precise min-max theorem for Zk
2-labelled graphs.



Corollary

If G is Zk
2-labelled, Eulerian, and 2d-edge-connected for an

integer d ≥ 2, and a ∈ V (G ) with max t < d , then there exist
S ⊆ V (G ) \ {a}, γ ∈ Zk

2 , and a re-signing s.t.
1 every non-zero edge is incident to a vertex in S and has

weight γ, and
2 |δ(S)| = 2d and w(E (G )) 6= dγ.
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Can we describe the structure of graphs with no
vertex-minor isomorphic to H?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number ≤ polynomialH(clique number).

See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:
Their clique number can be computed in polynomial-time.

See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Conjecture: Graphs are well-quasi-ordered by vertex-minors.

See (Oum 08).



Thank you!


