Vertex-minors and flooding immersions

Rose McCarty
Joint work with Jim Geelen and Paul Wollan (ongoing!)

IBS Virtual Discrete Math Colloquium January 2021

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from
a graph that is locally equivalent to G by deleting vertices.

$G * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

$G * v * u$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

$G * v * u$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

$$
G * v * u * u
$$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

$$
G * v * u * u * v=
$$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

G

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

$G * v$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

$$
G * v-v
$$

Locally complementing at v replaces the induced subgraph on the neighbourhood of v by its complement.

Two graphs are locally equivalent if one can be obtained from the other by local complementations.

A graph H is a vertex-minor of G if H can be obtained from a graph that is locally equivalent to G by deleting vertices.

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04$]$
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$
\left.\begin{array}{c}
\\
a \\
b \\
b \\
c
\end{array} \begin{array}{lll}
x & y & z \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$
\left.\begin{array}{c}
\\
a \\
b \\
b \\
c
\end{array} \begin{array}{lll}
x & y & z \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$
\left.\begin{array}{c}
\\
a \\
b \\
c
\end{array} \begin{array}{ccc}
x & y & z \\
c & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$
\left.\begin{array}{c}
\\
a \\
b \\
b \\
c
\end{array} \begin{array}{lll}
x & y & z \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

FIG. 1. Quantum computation by measuring two-state parti-

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

- Have pure pairs of size $\epsilon_{H} \cdot n$ [Chudnovsky-Oum 18]
- Have chromatic number $\leq f_{H}$ (clique number) [Davies 21]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

- Have pure pairs of size $\epsilon_{H} \cdot n$ [Chudnovsky-Oum 18]
- Have chromatic number $\leq f_{H}$ (clique number) [Davies 21]

Why local equivalence?

- Cut-rank: "connectivity for dense graphs" [Bouchet; Oum 05]
- Graph states: "resources in quantum computing" [Raussendorf-Briegel 01, Van den Nest-Dehaene-De Moor 04]
- Delta-matroids: "matroid theory for symmetric matrices" [Bouchet; Moffatt 19]

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

- Have pure pairs of size $\epsilon_{H} \cdot n$ [Chudnovsky-Oum 18]
- Have chromatic number $\leq f_{H}$ (clique number) [Davies 21]

Want a structure that guarantees some H^{\prime} is not a vertex-minor.

Difficulty: Our graph class can have arbitrarily large cliques.

Difficulty: Our graph class can have arbitrarily large cliques.

Difficulty: Our graph class can have arbitrarily large cliques.

Difficulty: Our graph class can have arbitrarily large cliques.

Difficulty: Our graph class can have arbitrarily large cliques.

Approach: Kotzig and Bouchet found a connection with flooding immersions.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say H floods G. If H and G are Eulerian, every immersion can be made flooding.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say H floods G. If H and G are Eulerian, every immersion can be made flooding.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.
It is flooding if every edge of G is in one of the trails; we say H floods G.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say H floods G. If H and G are Eulerian, every immersion can be made flooding.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say H floods G. If H and G are Eulerian, every immersion can be made flooding.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say H floods G. If H and G are Eulerian, every immersion can be made flooding.

An immersion of H into G consists of

- an injection $\psi: V(H) \rightarrow V(G)$ and
- for each $e=u v \in E(H)$, a $(\psi(u), \psi(v))$-trail in G, s.t. the trails are edge-disjoint.

It is flooding if every edge of G is in one of the trails; we say H floods G. If H and G are Eulerian, every immersion can be made flooding.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

A signed graph is a graph with a specified set Σ of edges, called the signature. Equivalently, each edge e has a weight $w(e) \in \mathbb{Z}_{2}$.

We only care about the weight of each cycle, where $w(C):=\sum_{e \in E(C)} w(e)$ over \mathbb{Z}_{2}. So re-signing (adding 1 to each edge in a cut) gives an equivalent signed graph.

For immersions of signed graphs, after re-signing, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

\square

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.

Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

G

For immersions of signed graphs, after re-signing H, - each $e \in E(H)$ is sent to a trail of weight $w(e)$ in G.

Now flooding immersions behave much differently.
Graphs with k different signatures are called \mathbb{Z}_{2}^{k}-labelled; each edge has a weight $w(e) \in \mathbb{Z}_{2}^{k}$. We can re-sign on any $\gamma \in \mathbb{Z}_{2}^{k}$.

So we are interested in flooding immersions of \mathbb{Z}_{2}^{k}-labelled Eulerian graphs...

in order to describe the structure of graphs without H as a vertex-minor.

The connection is through circle graphs.

So we are interested in flooding immersions of \mathbb{Z}_{2}^{k}-labelled Eulerian graphs...
...in order to describe the structure of graphs without H as a vertex-minor.

The connection is through circle graphs.

So we are interested in flooding immersions of \mathbb{Z}_{2}^{k}-labelled Eulerian graphs...
...in order to describe the structure of graphs without H as a vertex-minor.

The connection is through circle graphs.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

chord diagram

circle graph G

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

chord diagram

circle graph $G * u$

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

chord diagram

circle graph $G * u * v$

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

chord diagram

circle graph $G * u * v$

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3 -regular graph and contract the chords to get the tour graph. It is invariant under local

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3 -regular graph and contract the chords to get the tour graph. It is invariant under local complementation.

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation.

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3 -regular graph and contract the chords to get the tour graph. It is invariant under local complementation.

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

chord diagram

tour graph

A circle graph is the intersection graph of chords on a circle. Circle graphs are closed under local complementation.

View the chord diagram as a 3-regular graph and contract the chords to get the tour graph. It is invariant under local complementation. Here is how we delete v.

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)
If H and G are prime circle graphs, then

- their tour graphs $T(H)$ and $T(G)$ are unique and

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)
If H and G are prime circle graphs, then

- their tour graphs $T(H)$ and $T(G)$ are unique and
- H is a vertex-minor of $G \Longleftrightarrow T(H)$ floods $T(G)$.

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)
If H and G are prime circle graphs, then

- their tour graphs $T(H)$ and $T(G)$ are unique and
- H is a vertex-minor of $G \Longleftrightarrow T(H)$ floods $T(G)$.

circle graph

chord diagram

tour graph

Theorem (Kotzig 77 and Bouchet 94)
If H and G are prime circle graphs, then

- their tour graphs $T(H)$ and $T(G)$ are unique and
- H is a vertex-minor of $G \Longleftrightarrow T(H)$ floods $T(G)$.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph.

Theorem (with O-joung Kwon)
A class of graphs has unbounded rank-width if and only if it contains all circle graphs as vertex-minors.

Suppose G does not have H as a vertex-minor.

WMA that after local complementation, our favorite circle graph is an induced subgraph of G. Throw vertices into the circle graph. The remaining vertex gives a signature on the tour graph.

Theorem (Bouchet 94)

A graph is a circle graph

it has none of

as a vertex-minor.

circle graph

chord diagram

tour graph

tour graph

chord diagram

Adding \times will give a signature Σ in the tour graph.

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x.

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x.

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts".

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts". Re-signing at v is OK.

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts". Re-signing at v is OK.

circle graph $+x$

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

Can add x as a chord \Longleftrightarrow can re-sign s.t. $|\Sigma| \leq 2$.

circle graph

chord diagram

tour graph

Adding \times will give a signature Σ in the tour graph. Consider the neighbourhood of x. For each neighbour, choose an end of its chord and add 1 to both "incident arcs".

Then v is a neighbour \Longleftrightarrow the chord of v "splits the circle into two odd parts". Re-signing at v is OK. Deleting u is OK.

Can add x as a chord \Longleftrightarrow can re-sign s.t. $|\Sigma| \leq 2$.

What if no more vertices can be added to the circle graph?

What if no more vertices can be added to the circle graph?

Then the tour graph is \mathbb{Z}_{2}^{k}-labelled.

Here is an example of a "win"...

A toroidal grid with signatures Σ_{1},
of size 4, "far apart"

Here is an example of a "win"...

A toroidal grid with signatures Σ_{1},
of size 4, "far apart"

Here is an example of a "win"...

A toroidal grid with signatures Σ_{1}, Σ_{2},

Here is an example of a "win"...

A toroidal grid with signatures $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$

Here is an example of a "win"...

A toroidal grid with signatures $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ of size 4, "far apart".

Suppose we have a grid subgraph
and we identify its vertices to a new vertex a.

Suppose we have a grid subgraph and we identify its vertices to a new vertex a.

Suppose we have a grid subgraph and we identify its vertices to a new vertex a.

Suppose we have a grid subgraph and we identify its vertices to a new vertex a.

Need a "non-zero A-paths" type result...

Suppose we have a grid subgraph and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by a 1 -vertex graph with t non-zero loops at a?

Suppose we have a grid subgraph and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by a 1-vertex graph with t non-zero loops at a ?

Suppose we have a grid subgraph and we identify its vertices to a new vertex a.

What is the maximum t s.t. G is flooded by a 1-vertex graph with t non-zero loops at a ?

Have precise min-max theorem for \mathbb{Z}_{2}^{k}-labelled graphs.

Corollary
If G is \mathbb{Z}_{2}^{k}-labelled, Eulerian, and $2 d$-edge-connected for an integer $d \geq 2$, and $a \in V(G)$ with $\max t<d$, then there exist
(1) every non-zero edge is incident to a vertex in S and has weight γ, and

- $|\delta(S)|=2 d$ and $w(E(G)) \neq d \gamma$.

Corollary

If G is \mathbb{Z}_{2}^{k}-labelled, Eulerian, and $2 d$-edge-connected for an integer $d \geq 2$, and $a \in V(G)$ with $\max t<d$, then there exist $S \subseteq V(G) \backslash\{a\}, \gamma \in \mathbb{Z}_{2}^{k}$, and a re-signing s.t.

Corollary

If G is \mathbb{Z}_{2}^{k}-labelled, Eulerian, and $2 d$-edge-connected for an integer $d \geq 2$, and $a \in V(G)$ with $\max t<d$, then there exist $S \subseteq V(G) \backslash\{a\}, \gamma \in \mathbb{Z}_{2}^{k}$, and a re-signing s.t.

- every non-zero edge is incident to a vertex in S and has weight γ, and
- $|\delta(S)|=2 d$ and $w(E(G)) \neq d \gamma$

a•

Corollary

If G is \mathbb{Z}_{2}^{k}-labelled, Eulerian, and $2 d$-edge-connected for an integer $d \geq 2$, and $a \in V(G)$ with $\max t<d$, then there exist $S \subseteq V(G) \backslash\{a\}, \gamma \in \mathbb{Z}_{2}^{k}$, and a re-signing s.t.
(0) every non-zero edge is incident to a vertex in S and has weight γ, and

- $|\delta(S)|=2 d$ and $w(E(G)) \neq d \gamma$.

$$
\begin{aligned}
& \mathrm{a} \\
& d=3
\end{aligned}
$$

Corollary

If G is \mathbb{Z}_{2}^{k}-labelled, Eulerian, and 2d-edge-connected for an integer $d \geq 2$, and $a \in V(G)$ with max $t<d$, then there exist $S \subseteq V(G) \backslash\{a\}, \gamma \in \mathbb{Z}_{2}^{k}$, and a re-signing s.t.
(1) every non-zero edge is incident to a vertex in S and has weight γ, and
(2) $|\delta(S)|=2 d$ and $w(E(G)) \neq d \gamma$.

Corollary

If G is \mathbb{Z}_{2}^{k}-labelled, Eulerian, and 2d-edge-connected for an integer $d \geq 2$, and $a \in V(G)$ with max $t<d$, then there exist $S \subseteq V(G) \backslash\{a\}, \gamma \in \mathbb{Z}_{2}^{k}$, and a re-signing s.t.
(1) every non-zero edge is incident to a vertex in S and has weight γ, and
(2) $|\delta(S)|=2 d$ and $w(E(G)) \neq d \gamma$.

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

Conjecture (Kim-Kwon-Oum-Sivaraman 20): They have chromatic number \leq polynomial $_{H}$ (clique number).

- See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number \leq polynomial $_{H}$ (clique number).

- See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:
Their clique number can be computed in polynomial-time.

- See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Can we describe the structure of graphs with no vertex-minor isomorphic to H ?

Conjecture (Kim-Kwon-Oum-Sivaraman 20):
They have chromatic number \leq polynomial $_{H}$ (clique number).

- See (Davies-M 20) and (Bonamy-Pilipczuk 20).

Conjecture:
Their clique number can be computed in polynomial-time.

- See (Courcelle-Makowsky-Rotics 99) and (Gavril 73).

Conjecture: Graphs are well-quasi-ordered by vertex-minors.

- See (Oum 08).

Thank you!

